PROJET MONFE 011

Airport Tivat

SUGGESTIONS FOR THE TEXT TO BE USED IN THE TECHNICAL SPECIFICATION FOR THE USE OF

PATENTED* **MIX-IND**[®] SYSTEMS

For the air distribution it has been chosen to use the patented* MIX-IND[®] system with a PULSION BEAM , exclusively conceived by SINTRA.

Each PULSION BEAM will be constituted by a set of particular perforated ducts, called PULSERS[®], connected to the AHUs/ROOF-TOPs by rectangular ducts.

The PULSION BEAMS are of the "multi-functional" kind, with a variable air flow, and it will use the following patented* technologies:

- TWIN-VARIBOOST[®] it manages the variable air flow between the PULSERS[®], allowing to easily regulate the desired residual speed at floor level and to reduce to a minimum the plant's set-in-motion times.
- VARITRAP[®] for the manual regulation of a possible exhaust air flow for each PULSER[®], in order to be able to regulate the residual air speed at floor level during the plant's set-inmotion phase.

The system is constituted by two kinds of PULSERS®:

- Primary PULSER[®], which has the function to guarantee the controlled movement of the totality of the air rmass in the treated areas, with a maximum thermal gradient of 1°C (±1°C) in the whole volume and an average air speed at floor level which can be easily regulated by the user between 0,1 e 0,5 m/sec.
- Secondary PULSER[®], with special perforations at very high induction, but with no air throw, and a variable air flow between 0÷100%, which introduces the excess air flow without perturbing the activity of the primary PULSER[®].

A plenum will be positioned at the extremity of the PULSION BEAM for the feeding of the PULSERS®.

The plenum will be equipped with motorized dampers for the regulation of the air flow in the secondary PULSERS[®] The motorized dampers will be served by a modulating pressure switch, installed inside the plenum/primary PULSER[®] and run by the GTC, which will allow to obtain the desired pressure and air flow on the primary PULSERS[®] which will "discharge" more or less air flow on the seondary PULSERS[®].

During the plant's set-in-motion phase, the secondary PULSER[®] will be partially closed by the respective motorized dampers in order to increase the air flow and pressure on the primary PULSER[®].

This allows to create air drafts at floor level before the phase in which the premises are occupied, therefore it accelerates to a maximum the plant's set-in-motion times.

DESCRIPTION OF THE COMPONENTS

- The PULSERS[®] will be made of galvanized steel, realized in open modules in order to reduce the volumes for the transportation and consequently CO2 emissions, to be riveted on site, with a length not over 1m, constituted by:
 - Deep drawing for the reinforcement and alignment of the two extremities of each module, with special perforations to facilitate the closure with stainless steel rivets.
 - o Liquid expanding gasket for the fixing and tightness of the deep-drawn extremities.
 - Special omega collars TWIN-LOCK type for the junction of the modules, realized in galvanized steel of the suitable thickness, with no welding, with a special anti-corrosion treatment realized with magnesium galvanization, with precision double closure made with high resistancy screws.
 - Polyethylene low density gasket for the air tightness between the modules.
 - Patented VARITRAP[®] system for the manual regulation of a possible exhaust air flow, useful for the regulation of the residual speed at floor level during the plant's set-in-motion phase.
 - Adhesive protective film for the duct's surface, to be removed when the installation is finished, in order to safeguard the aesthetical appearance of the ducts.
- 2 PLENUM for the feeding of the PULSERS[®], each constituted by:
 - Structure in aluminium profile, type ANTICORODAL, with nylon junctions equipped with fastening screws for high pressure.
 - Sandwich panels with a 25 mm thickness, in galvanized steel, with high density polyurethane expanded foam.
 - Seal dampers for the automatic regulation of the secondary PULSERS[®] air flow, with opposed blades with aluminium airfoil profile 100mm pitch, complete with steel control levers and brass bearings, equipped with a bi-directional electric servo-motor 24 V, 180 sec, dimensioned for a continuous functioning with a counter-pressure of 400 Pa.
 - A differential pressure switch with a 0÷600 Pa range, with a 0÷10 V signal, for the regulation of the above mentioned dampers.

Note :

The PULSERS[®] support will be realized with steel cables type GRIPPLE or similar, in order to surround the PULSERS[®] circumference, to allow a possible rotation on its axis in case there is the need to vary the air throw angle of the PULSER[®].

* Patented: Subject of a patent, patent-pending or know-how SINTRA