GEOTECHNICAL INVESTIGATION For United Nations Development Programme (UNDP) Medical Stores Limited's Regional Warehouse Hubs CHIPATA

FINAL REPORT

Prepared by:

Head Office:

Rankin House 11038 Chozi Road P.O. Box 50566 Lusaka, Zambia

Tel: (+260-211-) 293156 / 290085

Fax: (+260-211-) 290562

Submitted: 16 September 2016

Report Prepared by: **Rankin Engineering Consultants**

> P.O. Box 50566 11038 Chozi Road Northmead, Lusaka

Zambia

Client: United Nations Development Programme (UNDP)

> **United nations House** Alick Nkhata Road, P.O. Box 31966 Lusaka, Zambia

Geotechnical Investigation for United Nations Development Pro-TITLE:

gramme (UNDP) Medical Stores Limited's Regional Warehouse

Hubs CHIPATA

Geotechnical Report

Report No: G2016-1 - GR01

Issue No: 01

Date of Issue: 16th September 2016

Disclaimer and Important Notice

This document is intended for the sole use of the Client as mentioned above, who has entered into a written agreement with Rankin Engineering Consultants (Rankin), the entity issuing this document. To the extent permitted by law, Rankin assumes no responsibility whether in contract, tort including without limitation negligence, or otherwise howsoever, to third parties (being persons other than the Client). This document must be read in its entirety and is subject to any assumptions and qualifications expressed therein as well as in any other relevant communications in connection with it. This document may contain detailed technical data which is intended for use only by persons possessing requisite expertise in its subject matter.

Compiled by:

Checked by:

Quality Control:

Daniel Linsel

Geotechnical Engineer

Suzanne Rattrav

Director

Hamed Javaheri Projects Manager

©Rankin Engineering Consultants. All rights reserved.

Reference to part of this report which may lead to misinterpretation is not permissible.

Table of Contents

Contents

Table of Contents	3
1. Introduction	4
2. Technical Standards	4
3. General Description of Project A	rea5
4. Geology	5
6. Results of field work	6
6.1 SPT	6
6.1.1 Analysis of SPT results	7
6.2 Trial Pits	8
7. Results of laboratory testing	8
8. Conclusions	10
Appendix A – Map	A-1
Appendix B – SPT test records	B-1
Appendix C – SPT and Test Pits Loggi	ng
Appendix D - Sieve Analysis Results	D-1
Appendix E - Atterberg Limit Results	E-1
Appendix F – Moisture Content Resu	ltsF-1
Appendix G – MDD Test Results	G-1
Appendix H – CBR Test Results	H-1

1. Introduction

Rankin Engineering Consultants was contracted by the United Nations Development Programme (UNDP) 18th August 2016 to carry out geo-technical investigations at the proposed sites for Mongu, Choma, Mansa, Mpika and Chipata Medical Stores Limited's Regional Warehouse Hubs. This report presents the findings based on the tests carried out in the field and laboratory testing.

Field testing included test pit, DPSH and SPT's.

Laboratory testing of samples included Sieve Analysis, Atterberg Limits, Moisture Content, MDD and CBR.

Field investigation was carried out over the period of 24th to 27th August 2016.

The map of the investigation area is included in Appendix A.

2. Technical Standards

The following technical standards were applied to this project:

BS EN 1997-2:2007 Geotechnical Design – Ground Investigation and testing

BS 1377-9:1990 Methods of test for Soils for Civil Engineering Purposes - In-situ tests

SANS 3001-GR1: 2013 Wet preparation and particle size analysis

BS 1377-2: 1990 Tests 1.2, 1.3 and 1.4 Liquid Limit, Plastic Limit & Plasticity Index, Linear Shrinkage

SANS 3001-GR30: 2013 Determination of the maximum dry density and optimum moisture content

SANS 3001-GR40: 2013 Determination of the California bearing ratio

BS 1377-2: 1990 Moisture Content

3. General Description of Project Area

The investigated area is located in Multi Facility Economical Zone (MFEZ) Chipata along Chadiza Road. It is rural, dominated by grass vegetation, with some small vegetable farms developed.

The whole area is covered by moist brown loose to medium dense clayey sand in the upper layers and moist dark brown loose to dense gravelly clayey sand with iron oxides at depth.

4. Geology

The geology of the Chipata Terrane is by far the most distinct and lithologically complex of all the terranes. It consists predominantly of variably retrogressed mafic, felsic and pelitic granulite, with subordinate hornblende-biotite gneiss, variably deformed granitoid and undeformed syenite. Hypersthene-bearing granitoids (charnockites) with abundant garnet-pyroxene-bearing mafic boudins predominate, while garnet- and cordierite-bearing pelitic granulites indicate that these lithologies underwent high-temperature/moderate-pressure tectonometamorphism [Schenk and Appel, 2001, 2002].

Metamorphic monazite from pelitic granulite in the Chipata Terrane (unknown locality) has been dated at circa 1046 Ma [Schenk and Appel, 2001, 2002]. In places, the granulites are crosscut and retrogressed along high-strain amphibolite-facies shear zones. The contact zones between the granulite and lower-grade hornblende and biotite gneisses are not exposed and the relationship between them is unclear. In general the lower-grade gneisses were derived from highly deformed K-feldsparbearing porphyritic augen granite, but in places it is clear that some of the gneisses have a sedimentary parentage. The augen gneisses are locally intruded by decimeter-scale, undeformed amphibolite dikes and coarse-grained, syenite. There is evidence for magma mingling between the mafic and syenitic melts indicating that they were intruded contemporaneously. Limited geochemical data indicate that the augen gneisses are calc-alkaline whereas the mafic amphibolites suggest formation in a continental extensional setting [Tembo et al., 2002; Mapani et al., submitted manuscript, 2006]. Occasionally there are isolated outcrops of undeformed K-feldspar-bearing porphyritic granite and garnet-bearing pelitic migmatite but their relation to the surrounding granulite/gneiss and timing of intrusion/migmatization are not known. ¹

 $^{^1}$ U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon geochronology of granitoid rocks in eastern Zambia: Terrane subdivision of the Mesoproterozoic Southern Irumide Belt. S. P. Johnson, B. De Waele, K. A. Liyungu

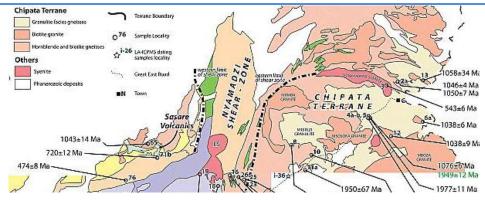


Figure 1: Map of Chipata Terrane

5. Methodology

The field work comprised a combination of soil profiling using undisturbed methods to extract samples of the soil to 5.0 metres depth where conditions allowed, combined with In-situ testing using Standard Penetration Test (SPT) 'down the hole' at every 1m level. Laboratory testing was done to classify the soil types encountered and to determine their engineering characteristics. Test pitting was also carried out on one point.

6. Results of field work

6.1 **SPT**

A total of 4 SPT tests were carried out at the test locations as shown on the map in Appendix A. The SPT test was performed using a split cone, with a 150mm seating blow. This test is used to directly determine the allowable bearing capacity under in-situ conditions. The number of blows required to advance the cone through the final 300mm of a 450mm test range is reported as the 'N' value. The SPT test records are included in Appendix B. A summary and interpretation is given in Table 1.

The allowable bearing capacity is a function of the foundation size and depth. Without knowing these in advance, an approximation of bearing capacity for various widths at the top of the excavation has been used.

It should be borne in mind that conditions at the time of testing may not be the worst condition that can be experienced over the life of the foundation, particularly with respect to saturated conditions in soils which are highly susceptible to softening under moisture. Reference should therefore also be made to soil classification results.

6.1.1 Analysis of SPT results

The SPT values recorded were processed using relationships developed by Bowles based on Meyerhof relationships. Calculated values for the site are given in the table below.

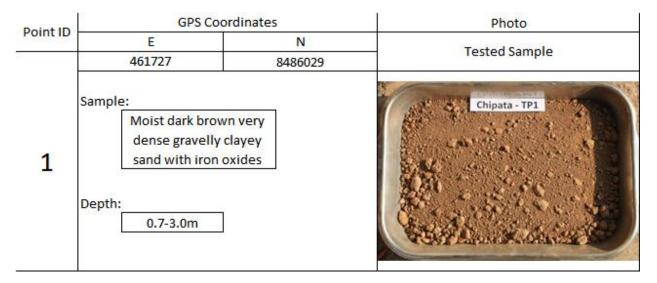
Chipata						
Point ID	Depth	N Value	Proposed founding depth (m)	Possible foundation width (m)	Average SPT in zone of influence	Allowable bearing capacity (kPa)
	1	17		0.8	13	155
SPT1	2	9	2.0	1	13	155
	3	56		1.5	13	155
	1	24		0.8	12	145
	2	8		1	12	145
SPT2	3	18	2.0	1.5	17	205
	4	10		2	18	220
	5	32				
	1	13		0.8	13	155
SPT3	2	40	2.0	1	13	155
	2.45	40		1.5	13	155
	1	17		0.8	15	180
	2	8		1	15	180
SPT4	3	6	2.0	1.5	13	155
	4	31		2	14	165
	5	7				

Table 1: Bearing Capacity based on SPT N Values

The results indicate that on Chipata site, an allowable bearing capacity of 155kPa at a minimum founding depth of 2.0 metres below the ground surface may be appropriate.

At the site, the materials in the proposed founding layer are moist brown clayey sand. The soil matrix itself appears loose to medium dense.

As the field testing was done during the dry season, it is anticipated that lower results would have been achieved during the rainy season. Reference is therefore made to the laboratory results.



6.2 Trial Pits

A total of 1 Trial Pits tests were carried out at the test locations as shown on the map in Appendix A.

Conditions on site allowed excavation as deep as 3.0m due to presence of very dense gravelly clayey sand.

The soil profiles (Appendix C) in trial pit revealed that the whole area is covered by moist brown loose to medium dense clayey sand in the upper layers.

7. Results of laboratory testing

Laboratory testing was used to classify materials and to corroborate the results of the SPT testing. The tests included Sieve Analysis, Atterberg Limits, Moisture Content, MDD and CBR.

A total of 4 undisturbed samples from the SPT borings were obtained for testing.

Soils were non-cohesive with low plasticity and moisture contents ranging from 6.4% to 7.4%. Bulk Unit weight was not possible to measure, as conditions did not allow obtaining a representative sample. The materials exhibit low shrinkage. The CBR of the material was 30%.

The actual lab test results are presented in Appendices D to H.

Table 2: Laboratory test summary

Chipata

			Depth			Linear			Sie	eve analy	sis								Pro	ctor		CBR	
Lab#	ID#	Visual Description	рерип	USCS classification	Moisture Content (%)	Linear			% passin	g sieve s	ize (mm))		PI	Shrinkage	Grading	Plasticity	Grading	MDD	ОМС		CDK	
			(m)			Shrinkage	0,075	0,425	2,0	5,0	28,0	50,0	63,0		Product	Co-efficient	Modulus	Modulus	(Kg/m³)	(%)	93%	95%	98%
3259	TP1	Moist brown loose to medium dense clayey sand (Residential)	0.7-3.0	sc															2175	7.7	31	30	-
3260	SPT1	Moist brown loose to medium dense clayey sand (Residential)	0-2.4	SC	7.1	7.14	30.1	75.8	99.5	100	100	100	100	15.5	541	24	467	0.9					
3261	SPT2	Moist dark brown loose to dense gravelly clayey sand with iron oxides (Residential)	2.6-5.0	SC	7.4	6.43	24.2	50.8	73.9	80.3	91.4	92.0	100	10.8	327	33	261	1.5					
3262	SPT3	Moist brown medium dense to dense clayey sand (Residential)	0-2.0	SC	6.4	8.57	30.9	72.1	98.7	99.5	100	100	100	18.2	618	28	562	1.0					
3263	SPT4	Moist dark brown loose to dense gravelly clayey sand with iron oxides (Residential)	2.7-5.0	SC	7.2	5.96	23.4	46.9	70.3	86.1	100	100	100	13.4	280	46	314	1.6					

SC Clayey sands, poorly graded sand-clay mixtures

8. Conclusions

From the investigation carried out, the following conclusions can be drawn:

- An allowable bearing capacity of 155kPa would be the maximum recommended.
- The soil at this site is mostly moist brown loose to medium dense clayey sand in the upper layers and moist dark brown loose to dense gravelly clayey sand with iron oxides at depth.
- SPT'N' Values reveal that soil stratum is loose to medium dense from ground level up to 2.7m and dense up to investigated depth.
- Groundwater was not encountered within the boreholes up to 5.0m depth during investigation.
- A minimum foundation depth of 2.0m is proposed.
- In-situ materials can be used as fill and as road pavement layers. Compacted to 95% MDD, a CBR of at least 30 is expected.
- All foundations for a single structure should be placed in the same strata and therefore should be at the same level.

Appendix A - Map

Appendix B - SPT test records

RECORD FO	R SUBSU	RFACE EX	PLORATION	ı					400	RANKIN
TYPE OF BO	RING:	SPT 1			DATE OF B	ORING:	26/08/20	16		Engineering Consultants
PROJECT NA	ME:	Survey for Limited	eotechnica or Medical 's Regiona	Store	BORING No	o: BH-1				RANKIN HOUSE, CHOZI ROAD, NORTHMEAD
		(Chipata	3)							P.O. BOX 50566, LUSAKA
OPERATOR'S										TEL/FAX +260 - 211 - 290085
LOCATION:	0461722	84859	86		Elevation:	1099m				
DES	CRIPTION	V.	PROFILE	DEPTH	BLOWS	SAMPLE	N	wc	γ	REMARKS
				m						
					6					
					8					
				<u> </u>	9					
			1.0	17	+	17				
Moist br	own loo	se to		1.0	3		1/			
medium					3					
sand (Resident	tial)			6					
				2.0	9	±	9			
					8					
					30					
Moist da					26					
dense grav	iron oxid	-		3.0	56	↓	56			No Ground Water Level Found
	sidential		DPSH	3.1	68		30			Refusal at 3.1m
(112		-			BULK SAME	PLE	•	•	В	
GROUND LE	VEL				DISTURBED	SAMPLE		•	D	
WATER LEV	EL		J		UNDISTUR	BED SAMP	LE		U	
S.P.T			*		WATER SAI	MPLE			W	
SKETCH MA	P OF BOR	IING HOL	E		<u>'</u>			1	1	

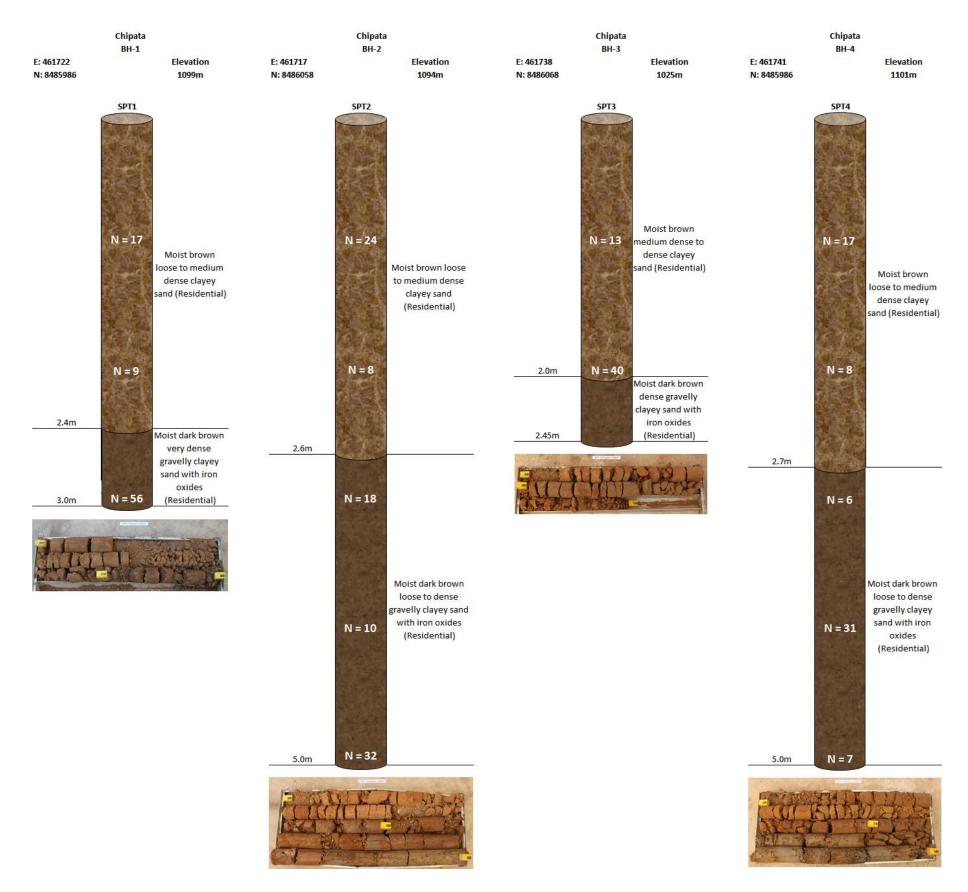
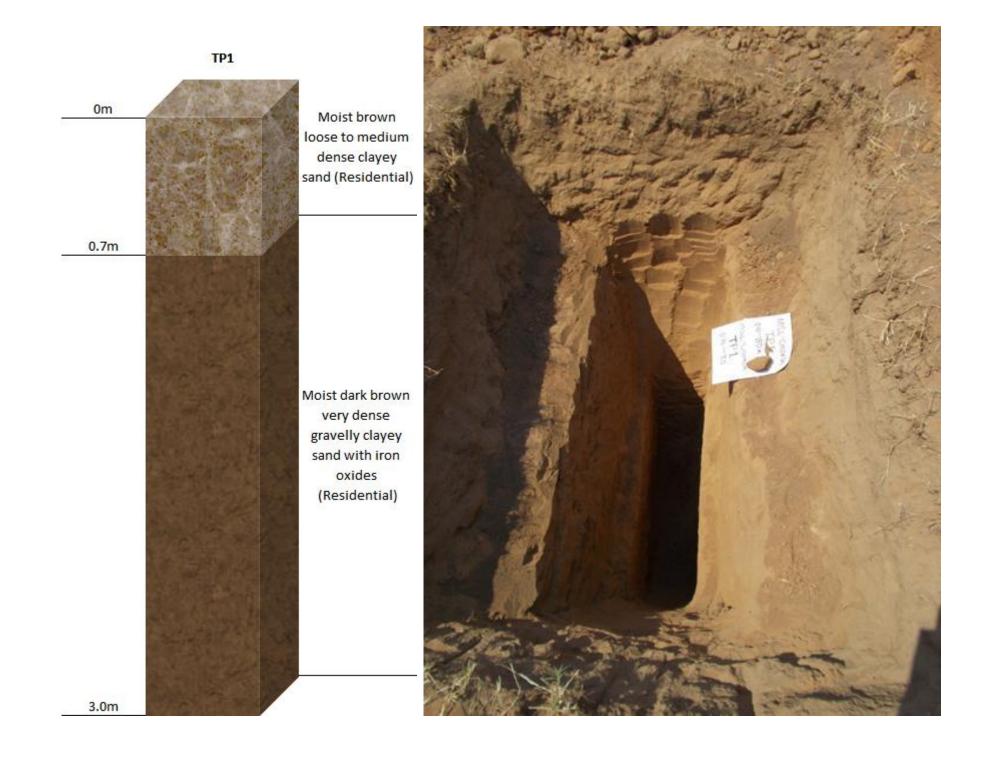
RECORD FOR SUBSU	RFACE EXI	PLORATION	I					-	RANKIN
TYPE OF BORING:	SPT 2			DATE OF B	ORING:	25/08/20	16		Engineering Consultants
		eotechnica		BORING N	o: BH-2				RANKIN HOUSE, CHOZI ROAD, NORTHMEAD
'KOIFCI NAIVIF:	-	or Medical s Regiona							
	(Chipata		111003						P.O. BOX 50566, LUSAKA
OPERATOR'S NAME:		•							TEL/FAX +260 - 211 - 290085
OCATION: 0461717		i.R		Elevation:	1094m				
0401717	0-10003	,,,		Lic vacion.	1054111				
DESCRIPTION	I	PROFILE	DEPTH m	BLOWS	SAMPLE	N	wc	γ	REMARKS
				5			\vdash	+	+
				10					
				14					
			1.0	24	_ ₩	24			
Moist brown loos			<u> </u>	2					
medium dense cl			⊢	3					
sand (Resident	iai)			5					
			2.0	8	±	8			
			2.0	6		-			<u> </u>
				9					
				9					
					l .				
			3.0	18	₩.	18			
				7					
Marian da di bassa da				5 5					
Moist dark brown lo dense gravelly claye				,					
with iron oxide			4.0	10	+	10			
(Residential			4.0	14	├ ▼	10		+	<u> </u>
(nesidential	'			19					
				13					
			5.0	32	<u>*</u>	32			No Ground Water Level Found
			5.1	3					
			5.2	7	1				
Maiat dark brawn I			5.3	6	1				
Moist dark brown lo dense gravelly claye			5.4 5.5	6 9	1				
with iron oxid		DPSH	5.6	11	1				
(Residential			5.7	14	1				
	·		5.8	13	1				
	l		5.9	13					
			6.0	13					
				BULK SAME	PLE		•	В	
GROUND LEVEL				DISTURBE	D SAMPLE		•	D	
WATER LEVEL		1,		UNDISTUR	BED SAMP	LE		U	
S.P.T		*		WATER SA	MPLE			W	
SKETCH MAP OF BOR	ING HOLE			WATER SAI	WIPLE		•	VV	

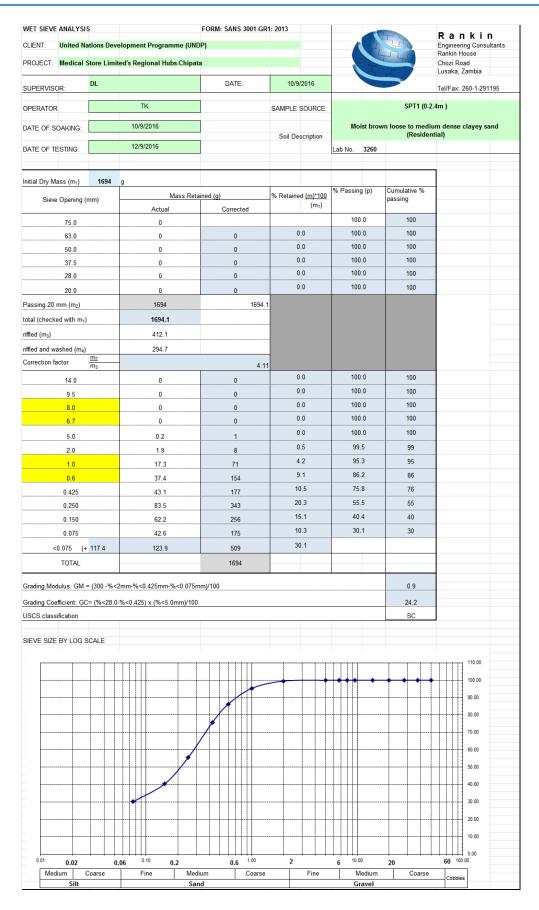
NECOND FOR SUBSUR	RFACE EX	PLORATION	ı						RANKIN
TYPE OF BORING:	SPT 3			DATE OF B	ORING:	26/08/20	16	U	Engineering Consultants
PROJECT NAME:	Survey fo	eotechnica or Medical s Regiona	Store	BORING N	o: BH-3				RANKIN HOUSE, CHOZI ROAD, NORTHMEAD
	(Chipata	a)							P.O. BOX 50566, LUSAKA
OPERATOR'S NAME:	DK								TEL/FAX +260 - 211 - 290085
LOCATION: 0461738	84860	58		Elevation:	1025m				
DESCRIPTION	ı	PROFILE	DEPTH	BLOWS	SAMPLE	N	wc	Y	REMARKS
			m						
				4					
			<u> </u>	6 7					
				/					
Moist brown med			1.0	13	+	13			
dense to dense cl				7	† *				
sand (Resident	iai)			10					
				30					
					L				
			2.0	40	. ★	40			No Ground Water Level Found
			2.1	-	1				
Moist dark brown			2.3						
gravelly clayey san			2.4						
iron oxides (Reside	ential)	DPSH	2.5	29					
		DPSH	2.6	51					
				BULK SAME	PLE		•	В	
GROUND LEVEL		<u> </u>		DISTURBE	D SAMPLE		•	D	
WATER LEVEL		1		UNDISTUR	BED SAMP	LE		U	
		Ţ		WATER SA	MPLE		•	w	
S.P.T									

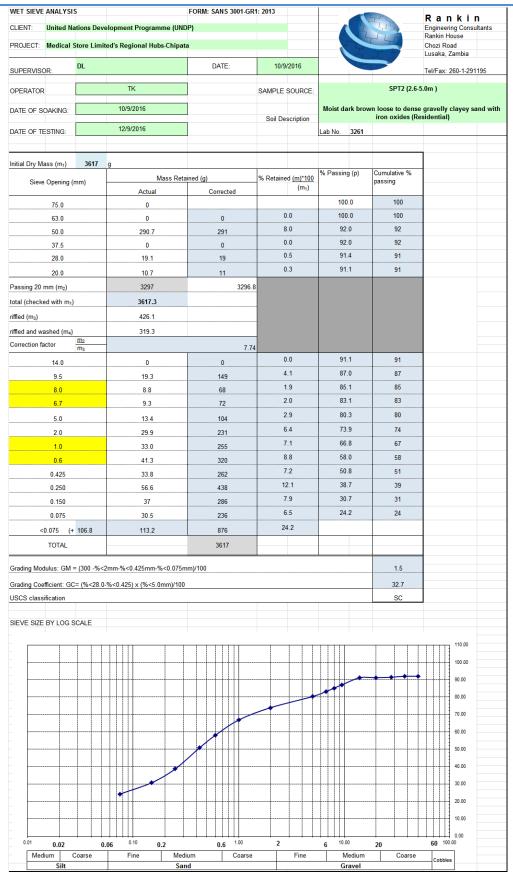
ALCOND FOR SUBSUI	RFACE EX	PLORATION	I						RANKIN
YPE OF BORING:	SPT 4			DATE OF B	ORING:	25/08/201	16		Engineering Consultants
	UNDP-G	eotechnica	al	BORING No	o: BH-4				RANKIN HOUSE, CHOZI ROAD, NORTHMEAD
ROJECT NAME:		or Medical 's Regiona a)							P.O. BOX 50566, LUSAKA
PERATOR'S NAME:									TEL/FAX +260 - 211 - 290085
OCATION: 0461741	84859	86		Elevation:	1101m				
DESCRIPTION	ı	PROFILE	DEPTH	BLOWS	SAMPLE	N	wc	γ	REMARKS
			m						
				6 8					
				9					
			1.0	17	+	17			
Moist brown loos	se to			4					
medium dense cl				4					
sand (Resident	ial)			4					
			2.0		L				
			2.0	8 3	±	8		+	
				3					
				3					
			3.0	6	▼	6			
				3					
				6					
Moist dark brown lo				25					
dense gravelly claye with iron oxide	-		4.0	31	+	31			
(Residential			4.0	3	- ▼	31		1	
(nesidentis.	,			3					
				4					
			5.0	7	_★	7			No Ground Water Level Found
			5.1	1					
			5.2 5.3	1	-				
			5.4	1	1				
			5.5	4	1				
			5.6	4					
Moist dark brown lo			5.7	4					
dense gravelly claye with iron oxide		DPSH	5.8	6					
(Residential			5.9	7					
,	*		6.0	13	1				
			6.1	8				-	
			6.2	8 12					
			6.4	12	1				
			6.5	12	1				
				BULK SAME	PLE		•	В	
GROUND LEVEL		1.		DISTURBE	SAMPLE			D	
		<u> </u>		UNDISTUR		I E	_	U	
WATER LEVEL		+				LL			
S.P.T				WATER SAI	WIPLE		•	W	

Appendix C - SPT and Test Pits Logging

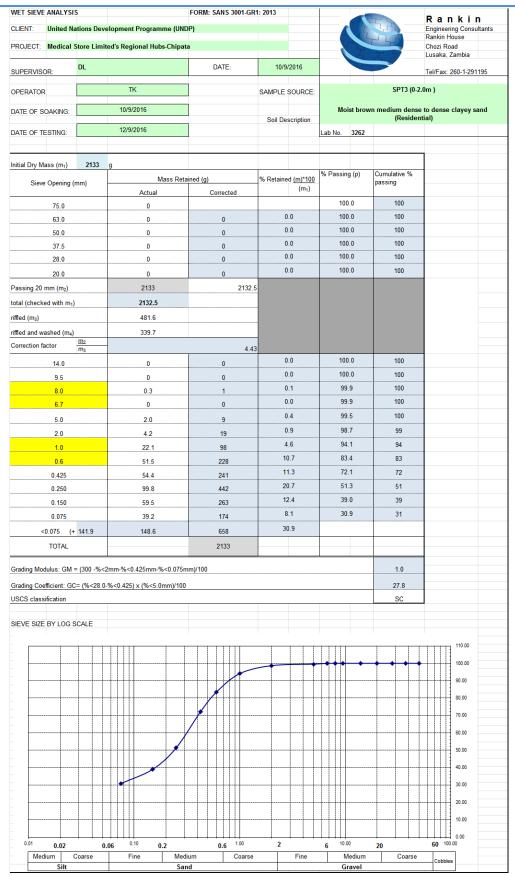
Figure 2: SPT Logging

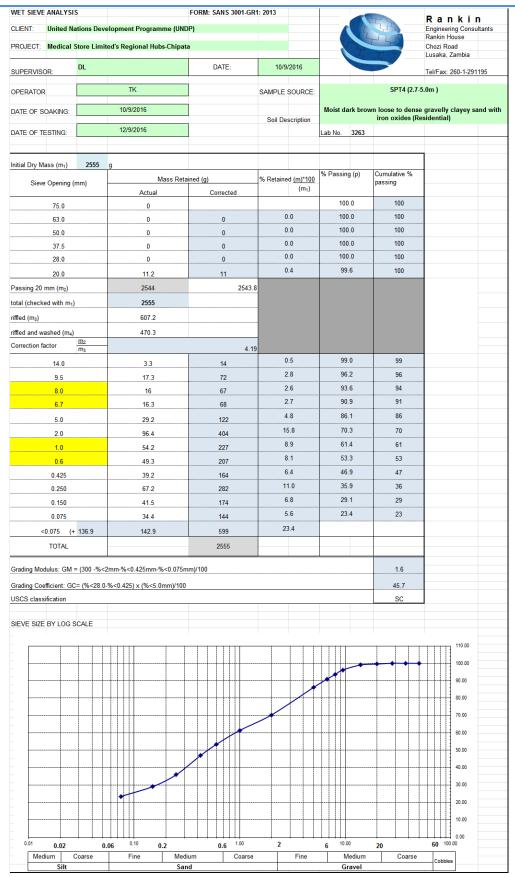




Figure 3: Test Pits Logging



Appendix D - Sieve Analysis Results





Appendix E - Atterberg Limit Results

F	Rankin						_					
H	Engineering Cons	sultant	s				CC	DNE	PEN	ETRON	METER	₹
1	Rankin House											
	Chozi Road									Plastic Lir		
	Lusaka, Zambia Tel/Fax: 260-1-29	91195					Line	ar Shrir	nкage and	Shrinkage Pr	oduct	
OJECT:	Medical Store Lin			-Chipat	a			DESCR		PT1 (0 - 2.4m) Moi esidential)	ist brown loose to	o medium dense cla
IENT :	United Nations De	evelop	ment Programi	ne (UNI	OP)			LAB No	o :	3260	DATE :	14/09/201
SPONSIBLE	TECHNICIAN:	TK						CHECK	KED:	DL	APPROVE	D: SR
ST METHO	D		Т	ESTS	1.2, 1.3	and 1.	4 , re	ef. BS 1	1377 : Par	t 2: 1990		
			LIQUID LIMIT							PLASTIC L	IMIT	
	ST NO.		1		2		3		4	1	2	Average
ial gauge rea		mm	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0	.0		
al gauge read		mm	15.0 1 15.0	5.0 18.7	18.5 18.6	21.2	21.2	21.1 2	24.5 24.3	4.0		
erage penetra ntainer Numb		mm	15.0 CM1		18.6 H		21.2 RK6		24.3 RK15	DMO2	DMO4	1
	et soil & container g 34.0				34.5		34.2		34.2	9.81	10.54	
ss of dry soil	& container	g	30.2		30.3		29.9		29.7	9.53	10.2	
ss of contain	er	g	14.2		14.1		14.3		14.2	7.08	7.36	
ss of dry soil g 16.0				16.2		15.6		15.5	2.5	2.9		
ss of moistur	е	g	3.8		4.2		4.3		4.6	0.3	0.3	
isture conten	t	%	23.6		25.9		27.6		29.5	11.4	11.2	11.3
C 30							У	= 1.5	806x - 2	2.366		
0											Sample pre	paration :
N E ²⁵											a) As recei	
-											b) Airdried	: °C
Р.												l on 425 µm
E 20											d) Oven dr e) Not know	
N											e) Not knot	WII
E 15											Proportion	passing on 425
											µm sieve :	=
R A 10											76	
T 10											LIQUID LIN	
i		##		##					1111	####		<mark>26.8</mark> %
O 5											PLASTIC L	IMIT
N		- -										<mark>11.3</mark> %
0											PLASTICIT	TY INDEX
20.0	22.0	24.	.0 26.	0	28.0	30	0.0	3	32.0	34.0	PI =	15.5 %
			MOIS	TURE	CONTEN	T (%)						
			R SHRINKAG	E and	SHRINKA	GE PRO	DUCT					
	Specimen referen	nce						1	2	3	4	5
	Initial Length		L ₀			m		140 130				
						m	111	1 130	'			
	Oven dried length		L _D L _D	L _D /L _O))		0/	, D	7.14	4			
	Oven dried length	ıkage,	LS = 100* (1-(9/	Ď	7.14 542.8				

A FIR	Rankin															
The same of the sa	Engineering Cons	sultant	s						CC	NE	<u>: PE</u>	NE	TRON	1LTEF	₹	
1	Rankin House												4			
	Chozi Road								1				astic Lin			
	Lusaka, Zambia Tel/Fax: 260-1-29	91195							Line	ar Shr	rınkage	and SI	nrinkage Pro	oduct		
ROJECT :	Medical Store Lin			l Hubs	-Chinat	a				DESC	CRPTN :		2 (2.6 - 5.0m) M			o dense grave
												claye	y sand with iron	_		4.4/0.0/0.4
LIENT :	United Nations De		ment Pro	gramr	ne (UNI)P)				LAB			3261 DL	DATE :		14/09/201
ESPONSIBLE	E TECHNICIAN :	BZ								CHEC	CKED:		DL	APPROVE	:D:	SR
ST METHO	D			Т	ESTS	1.2	2, 1.3	and 1.	4 , re	ef. BS	1377 :	Part 2	2: 1990			
			LIQUID	LIMIT									PLASTIC L	IMIT		
TES	ST NO.					2			3		4		1	2		Average
itial gauge rea	ding	mm	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0		_		,gc
inal gauge read	ding	mm	15.2		5.0 18.0		17.9	21.0		20.8	24.0	23.8				
verage penetra		mm		5.1		18.)		20.9		23.		01100	0111	1	
ontainer Numb		g		11 3.8		1L 27.	1		26.5		27.		OMO3 11.84	11.7		
ass of dry soil		g		1.6		24.			24.2		24.		11.35	11.3		
lass of contain	er	g	14	1.0		14.	4		14.3		14.	4	7.2	7.41		
lass of dry soil		g		0.6		10.			9.9		10.		4.2	3.9		
lass of moistur	_	g		.2		2.3			2.3		2.5		0.5	0.5		
loisture conten	ıt	%	20	0.8		22.		. 40	23.0	-	24.	U	11.8	12.1		11.9
C 30						y =	2.779	x - 43	0.025) 						
O N														Sample pr		ion :
E 25												_		a) As rece b) Airdried		°C
_ ==		##=		##			##							c) Washe		
P 20		++-						+						d) Oven d		°C
E ²⁰ N		‡		_	+				##	###	111	++		e) Not kno	wn	
		+		##					##		111	11		D "		105
E 15		-							+	\vdash	+	++	+++	Proportion µm sieve :		ig on 425
R		##-		\dashv					##	+ + +	+	++		51		
A 10						\blacksquare				Ш				LIQUID LI	MIT	
Ţ		_												LL =	22.7	%
0 5					$\pm \pm$		$\pm \vdash$		$\pm F$		$\pm H$	$\pm \mp$		PLASTIC		
N =														PL =	11.9	
		$+\Gamma$							H					PLASTIC		/0
20.5	21.0	21.5		22.0		22.5		23.0		23.5		24.0	24.5	PI =	10.8	%
			ı	MOIS.	TURE	CON	TENT	(%)								
	L	INEA	R SHRII	NKAG	E and	SHR	NKAG	E PRO	DUCT	Γ						
	Specimen refere	nce								1		2	3	4		5
	Initial Length			L ₀				m		14						
				LD				m	m	13				1		
	Oven dried length		LS = 100)* /1 /	15/1-3			0.	_	6	13					
	Oven dried length Linear Shrir Shrinkage Produc	nkage,						%	b	6. ⁴						

AFB -	Rankin								\		L				
The second	Engineering Cons	sultant	s					\overline{CC})NE	<u>: PE</u>	NE	TRON	<u> 1 E I E I</u>	₹	
	Rankin House											4			
	Chozi Road											astic Lin			
	Lusaka, Zambia Tel/Fax: 260-1-29	1195						Line	ar Shri	inkage a	ind SI	hrinkage Pro	oduct		
OJECT :	Medical Store Lin			bs-Chi	pata				DESC	RPTN :		3 (0 - 2.0m) Mo (Residential)	oist brown medi	um dens	se to dense cl
JENT :	United Nations De	evelor	ment Progra	mme (l	UNDP)				LAB N	o :	Julia	3262	DATE :		14/09/2010
	TECHNICIAN:	BZ							CHEC			DL	APPROVE	D :	SR
OT METHO				TEOT	-0 4	0.40		1	f D0	4077	D1 (2 . 4000			
ST METHO	U .			TEST	5 1.	.2, 1.3	and 1.	4 , re	ет. ВS	13// :1	Part 2	2: 1990			
			LIQUID LIM	IT								PLASTIC L	IMIT		
	ST NO.		1		2	! T		3		4	1	1	2		Average
tial gauge rea		mm			0.0 0.0	0.0	0.0	0.0		0.0 0.0		-			
erage penetra		mm	15.0 15.1	15.1 1	18.2 18	18.0 .1	21.0	21.1	21.1	24.0	24.3	1			
ntainer Numb	er		RNK3		ACI	M1		UU		RNK	8	E	J9		
ass of wet soil		g	34.3		34			34.0	_	34.2		9.96	10.0	6	
ss of dry soil		g	30.4 14.5	\dashv	29 14			29.5 14.0		29.4		9.72 7.36	9.8 7.29)	
ss of dry soil		g	15.9		15			15.4		15.2		2.4	2.5		
ss of moistur	e	g	3.9		4.	2		4.6		4.8		0.2	0.3		
isture conten	t	%	24.7		27	.2		29.5		31.3		10.2	10.4	l .	10.3
C 30									y = 1	.3693	x - 1	8.984			
0				H				毌			$\pm \mathbb{F}$		Cample :	oner-"	ion :
N E ²⁵		H		+				+					Sample pr a) As rece		IUI1 .
E ~~				##=				++-			•		b) Airdried		° C
Р.,								+	++	T			c) Washe		
E 20						+							d) Oven d e) Not kno		°C
N								##					e) NOLKING	/ VV I I	
E 15		Ħ		##				##					Proportion	passir	ng on 425
				##				##					µm sieve :		J =3
R				##				##					72		
A 10													LIQUID LI	MIT	
i ⊨		##=		##				##	+ + +		++	####	LL =	28.5	%
O 5				##				##					PLASTIC	LIMIT	
N		##		+				##	###		++		PL =	10.3	%
, <u></u>													PLASTIC		DEX
24.0	25.0	26.0	27.0		28.0		29.0		30.0	3	31.0	32.0	PI =	18.2	%
			IVIOI	3101	VE COL	NTENT	(%)								
	Specimen referer		R SHRINKA	GE a	nd SHR	RINKAG	E PRO	DUCT	Γ 1	<u> </u>	2	3	4		5
			L ₀				m	m	140		_		+ -		
													+		
	Initial Length	1	L _D				m	m	128	0					
	Initial Length Oven dried length			-(L _D /L	o))		m %		8.5						

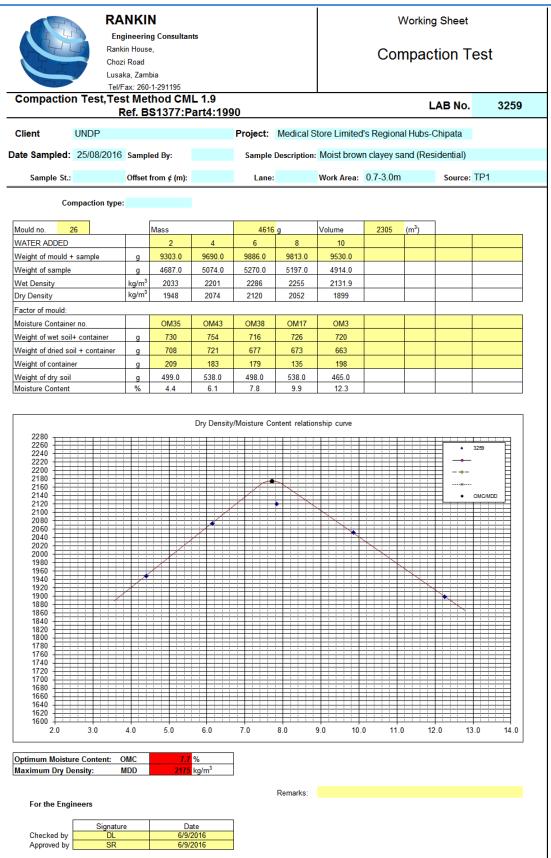
5	Rankin																	
The state of the s	Engineering Cons	sultant	ts						_ (\mathbb{Z}^{C}	N _C	E _F	EN	ΝE	TRON	<u> IETEI</u>	₹	
74	Rankin House														4	.,		
	Chozi Road Lusaka, Zambia									Line					astic Lin Irinkage Pro			
	Tel/Fax: 260-1-29	91195	j							LIIIE	aı ən	ıııkd	ye an	u of	minage PIC	Julie		
ROJECT:	Medical Store Lin	nited's	Region	al Hub	os-Chip	ata					DES	CRPT			4 (2.7 - 5.0m) N sand with iron			to dense gravel
IENT :	United Nations De	evelop	oment Pr	ogran	nme (l	NDP)					LAB	No :			3263	DATE :		14/09/2016
SPONSIBLE	TECHNICIAN:	BZ									CHE	CKED	:		DL	APPROVI	ED:	SR
ST METHO	D				TEST	S 1	1.2, 1.3	3 and	1.4	, re	ef. BS	137	7 : P	art 2	: 1990			
			LIQUID	LIMI	т										PLASTIC L	IMIT		
TES	ST NO.		<u> </u>	1			2	\perp		3	1		4		1	2		Average
ial gauge read	ding	mm	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0				
al gauge read	ding	mm	13.4		15.2		17.8	2	1.0		21.1	23.8		24.0				
erage penetra	ation	mm	1	5.3		1	7.9		2	1.1			23.9					
ntainer Numb	er		M	1D4	\perp	L	LL	\perp		2			RK7		Α	JK		
ss of wet soil	& container	g		0.1	\dashv		9.1	4		0.3			29.6		10.63	10.8		
ss of dry soil	& container	g		7.3	\dashv		6.2	\bot		6.9			26.3		10.28	10.8	5	
ss of container g			4.5			4.0	\perp		4.0			14.2		7.36	7.2			
ss of dry soil		g		2.8			2.2			2.9			12.0		2.9	3.3		
ss of moistur	е	g		2.8			3.0			3.4			3.4		0.4	0.4		
isture conten	t	%	2	2.0		2	4.2		2	6.3			27.9		12.0	12.0)	12.0
C 30										у	= 1,4	645	x - 1	7.1	98			
O N				#					##							Sample pr	eparati	ion :
E 25				\perp					\pm	\boxplus			11.			a) As rece	eived	
			H	Ħ		H	H	H	Ħ	Ħ		1	7	\Box		b) Airdrie c) Washe		° C 25 um
				#	###				+					$\pm \pm$		d) Oven d		° C
Р.			-	1 1	+++		-		++	##	##			##		e) Not kno	own	
P = 20					1	*	-		-				1 1					
P = 20				_					\blacksquare	##	##			##		Drev+:		405
P 20 N E 15 T										Ħ						Proportion um sieve		ng on 425
P = 20																Proportion µm sieve :		ng on 425
P 20 N E 15 T R A 10																µm sieve		ng on 425
P = 20 N																µm sieve 47 LIQUID LI		
P 20 N E 15 T R A 10 T I																µm sieve	MIT 25.4	%
P																µm sieve : 47 LIQUID LI	MIT 25.4	%
P E 20 N E 15 T R A 10 T I O 5 N																um sieve : 47 LIQUID LI LL = PLASTIC	MIT 25.4 LIMIT 12.0	%
P = 20	21.0 22	2.0	23.0)	24.)	25.0		26.0		2	7.0		28.0	29.0	µm sieve 47 LIQUID LI LL = PLASTIC PL = PLASTIC	MIT 25.4 LIMIT 12.0	% DEX
P = 20	21.0 22	2.0						T (%)	2	7.0		28.0	29.0	µm sieve : 47 LIQUID LI LL = PLASTIC PL =	MIT 25.4 LIMIT 12.0 ITY INE	%
P = 20	21.0 22	2.0					25.0 PNTEN	T (%			2	7.0		28.0	29.0	µm sieve 47 LIQUID LI LL = PLASTIC PL = PLASTIC	MIT 25.4 LIMIT 12.0 ITY INE	% DEX
P = 20	21.0 22	2.0						T (%)	2	7.0		228.0	29.0	µm sieve 47 LIQUID LI LL = PLASTIC PL = PLASTIC	MIT 25.4 LIMIT 12.0 ITY INE	% DEX
P = 20				MOIS	STUR	E CO	NTEN		6)			7.0		228.0	29.0	µm sieve 47 LIQUID LI LL = PLASTIC PL = PLASTIC	MIT 25.4 LIMIT 12.0 ITY INE	% DEX
P = 20		.INEA		MOIS	STUR	E CO	NTEN		6)			7.0	2		29.0	µm sieve 47 LIQUID LI LL = PLASTIC PL = PLASTIC	MIT 25.4 LIMIT 12.0 ITY INE	% DEX
P = 20	L Specimen referen	INEA		MOIS INKA	STUR	E CO	NTEN		ROD	ист	11	151				µm sieve 47 LIQUID LI LL = PLASTIC PL = PLASTIC PI =	MIT 25.4 LIMIT 12.0 ITY INE	% % DEX %
P = 20	Specimen referer Initial Length Oven dried length	LINEA nce	AR SHRI	INKA	STUR	E CO	NTEN		ROD	ист	11	1 51 42				µm sieve 47 LIQUID LI LL = PLASTIC PL = PLASTIC PI =	MIT 25.4 LIMIT 12.0 ITY INE	% % DEX %
P 20 N E 15 T R A 10 T I O 5 N	L Specimen referen	nce	AR SHRI	INKA L ₀ L _D 00* (1-	STUR	E CO	NTEN		ROD	ист	1! 14 5.	151				µm sieve 47 LIQUID LI LL = PLASTIC PL = PLASTIC PI =	MIT 25.4 LIMIT 12.0 ITY INE	% % DEX %

Appendix F - Moisture Content Results

MOISTURE CONTENT			FORM M1			RANK	ΙN
CLIENT: United Nation	ons Development Pr	ogramme (UNDP)			ENGINEERING CONSU	
		(,			RANKIN House	
PROJECT: Medical Sto	re Limited's Region	al Hubs-Chi	pata			CHOZI ROAD	
						LUSAKA, ZAMBIA	
TECHNICIAN:	DL		DATE 31/08/2	2016		Tel/Fax: 260-1-291195	
SAMPLE SOURCE:	SPT1 (0 - 2.4m)	Moist brown	loose to me	dium dense c	ayey sand (Residenti	al)	
	Lab # 3260						
TEST ref: BS 1377: Part 2	: 1990						
Container Number		RNK35	RNK12	RK6			
Mass of wet soil & conta	iner (g) (m ₂)	41.0	45.2	42.4			
Mass of dry soil & contain	ner (g) (m ₃)	39.2	43.3	40.5			
Mass of container (g) (m	1)	14.2	14.2	14.3			
Mass of dry soil (g) (m ₃ -	m ₁)	25.0	29.0	26.2			
Mass of moisture (g) (m ₂	- m ₃)	1.8	2.0	1.9			
Moisture content (%)		7.4%	6.8%	7.3%			
AVERAGE			7.1%				
CHECKED BY:	DL						
DATE:	DATE 31/08/2016						

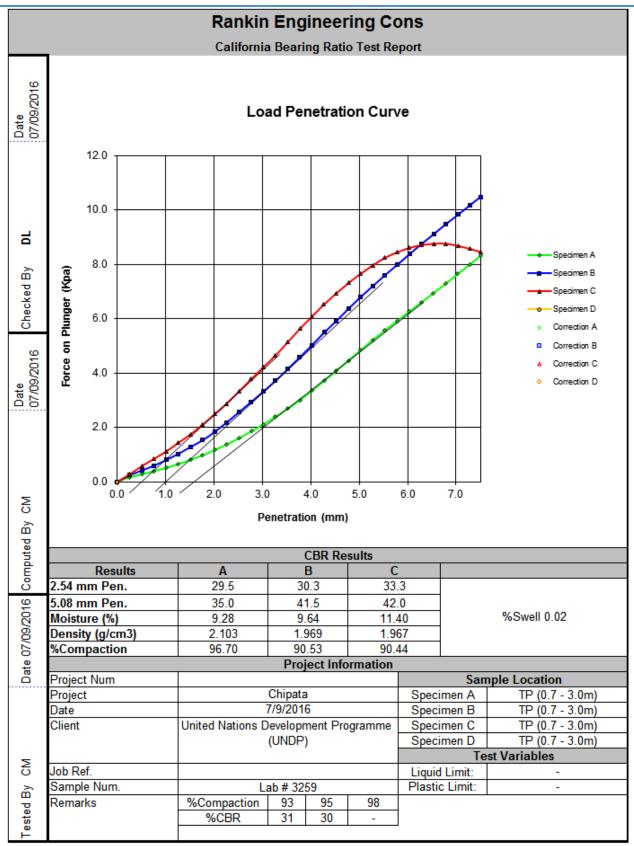
MOISTURE	CONTENT			FORM M1				ВΑ	N K	I N
CLIENT:	United Nation	s Development Pro	ngramme (IINDD)			-		IN IN ING CONSULT	
CLILIVI.	omited Nation	s Development i	ogramme (JNDI- J			7 4	RANKIN H		
PROJECT:	Medical Store	Limited's Region	Il Hubs-Chipata					CHOZI ROAD		
								LUSAKA, ZA		
TECHNICIA	TECHNICIAN: DL			DATE 31/08/2016				Tel/Fax: 260-		
SAMPLE S	SOURCE:	SPT2 (2.6 - 5.0m) Moist darl	brown loose	to dense gra	velly clayey s	and with	iron oxides (Re	esidential)	
		Lab # 3261								
TEST ref: BS	1377: Part 2 : 1	990								
Container N	Container Number		JJ	RNK15	RK1					
Mass of we	et soil & containe	er (g) (m ₂)	44.7	37.4	43.0					
Mass of dry	Mass of dry soil & container (g) (m ₃)		42.6	35.7	41.1					
Mass of co	ntainer (g) (m ₁)		14.3	14.2	14.1					
Mass of dry	Mass of dry soil (g) (m ₃ - m ₁)		28.3	21.5	27.0					
Mass of mo	oisture (g) (m ₂ -	m ₃)	2.1	1.6	1.9					
Moisture co	ontent (%)		7.5%	7.5%	7.1%					
AVERAGE			7.4%							
CHECKED	BY:	DL								
DATE:		DATE 31/08/2016								

MOISTURE CONTENT			FORM M1				R A	N K	ΙN
CLIENT: United Natio	ns Development Pr	ogramme (UNDP)					ING CONSUL	
		rogramme (one) y				7 7	RANKIN H		
PROJECT: Medical Stor	re Limited's Region						CHOZI ROA		
							LUSAKA, Z		
TECHNICIAN:	DL		DATE 31/08/2016				Tel/Fax: 260-1-291195		
SAMPLE SOURCE:	SPT3 (0 - 2.0m)	Moist brow	n medium de	nse to dense	clayey sand (R	esidential)		
	Lab # 3262								
TEST ref: BS 1377: Part 2 :	1990								
Container Number		O5	CM1	RK16					
Mass of wet soil & contain	ner (g) (m ₂)	55.2	52.3	48.1					
Mass of dry soil & contain	Mass of dry soil & container (g) (m ₃)			46.1					
Mass of container (g) (m ₁)	14.1	14.2	14.3					
Mass of dry soil (g) (m ₃ -	Mass of dry soil (g) (m ₃ - m ₁)			31.9					
Mass of moisture (g) (m ₂	- m ₃)	2.4	2.3	2.0					
Moisture content (%)		6.3%	6.5%	6.2%					
AVERAGE	6.4%								
CHECKED BY:	DL								
DATE:	DATE 31/08/2016								



MOISTURE	CONTENT			FORM M1				D 4	N. 17			
							The -		NK			
CLIENT:	LIENT: United Nations Development I			rogramme (UNDP)			77	ENGINEERING CONSULTANTS RANKIN HOUSE				
PROJECT:	PROJECT: Medical Store Limited's Regiona			al Hubs-Chipata				CHOZI ROAD				
								Lusaka, Zambia				
TECHNICIA	N:	DL		DATE 31/08/			Tel/Fax: 260-1-291195					
SAMPLE S	OURCE:	SPT4 (2.7 - 5.0m)) Moist darl	t brown loose	to dense gra	velly clayey sa	and with i	ron oxides (Re	esidential)			
		Lab # 3263										
TEST ref. BS	1377: Part 2 : 1	990										
Container N	Container Number		F4	RK6	F11							
Mass of we	Mass of wet soil & container (g) (m ₂)			50.7	51.4							
Mass of dry	Mass of dry soil & container (g) (m ₃)		49.9	48.3	48.9							
Mass of cor	ntainer (g) (m ₁)		14.1	14.3	14.0							
Mass of dry	Mass of dry soil (g) (m ₃ - m ₁)		35.8	33.9	34.9							
Mass of mo	isture (g) (m ₂ - r	n ₃)	2.6	2.5	2.5							
Moisture co	ntent (%)		7.4%	7.2%	7.1%							
AVERAGE			7.2%									
CHECKED	BY:	DL										
DATE:		DATE 31/08/2016										

Appendix G - MDD Test Results



Appendix H - CBR Test Results

page 1 of 1