TECHNICAL REPORT

Project Name:

Design of 9-Year School "Emin Duraku",

Tirana Municipality

Programme Title:

EU for Schools

European Union EU

<u>Financed by:</u>

<u>Design Team:</u>

HT Construction (High Tech Construction) ltd

TIRANA, JANUARY 2022

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

STRUCTURAL TECHNICAL REPORT

Content:

Conter	<i>it</i> :	2
1. Intr	roduction	5
2. Ger	neral Description of the Structural Calculations	6
2.1.	General Description of the Calculations	6
2.2.	Design Working Life:	7
3. Ma	terials	8
3.1.	Concrete C25/30	8
3.2.	Concrete C30/37	9
3.3.	Environmental Condition	11
3.4.	Defining the Cover of the Concrete	13
3.5.	Reinforced Steel	15
3.6.	Steel Structure	16
3.6.1.	Dimensioning of Main Elements of Steel Structure	18
4. Con	nputer Calculation and Analysis	19
4.1Sta	tic and Dynamic Analysis	19
4.1.1.	Static Analysis	19
4.1.2.	Dynamic Analysis	24
5. Des	signed Loads	24
5.1.	Permanent Loads	24
5.2.	Vertical Linear Loads of the Walls and the other Elements	25
5.3.	Imposed Loads	25
5.4.	Horizontal Loads of the Parapet	28

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

5.5.	Seismic Loads	29
5.5.1.	Seismic Coefficients in the Structure	29
5.5.2. Resista	Design Spectrum (calculative) of the Accelerations according to EN-8 (Design of Structures for earthque unce)	
6. Fur	ndamental Requirement	32
6.1.	No Collapse Requirement	32
6.2.	Damage Limitation Requirement	32
7. Des	signing Criteria	33
7.1.	Ultimate Limit State ULS	36
7.2.	Importance Classes for Buildings, Importance Factor and Behaviour Factor	36
7.3.	Criteria for Structural Regularity	37
7.4.	The Behaviour Factor of the Structure	38
7.5.	Accidental Torsional Effects	39
8. The	Table of the Modal Participation Factor and the Modal Shape	39
9. Dri	fts	48
9.1The	Relative Displacement of the Interfloors According to Two Directions	48
10.Des	scription of the Component Elements of the Structure	50
10.1.	Foundations	50
10.1.1.	Reinforced Foundation Slab	53
10.1.2.	Reinforced Foundation Beams	53
10.1.3.	Reinforced Footings	54
10.2.	Reinforced Concrete Frame	54
10.2.1.	Reinforced Concrete Columns and Walls	54
10.2.2.	Reinforced Concrete Beams	55
10.2.3.	Slabs	55

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

10.2.4.	Reinforced Concrete Staircases	58
11.Schen	nes of Dimensioning of Representative Elements of the Structure	59
11.1.	Object 1	59
11.2.	Object 2	66
11.3.	<i>Gym</i>	73
12.Schen	nes of Moments in the Representative Elements of the Structure	76
12.1.	Object 1	76
12.2.	Object 2	83
12.3.	<i>Gym</i>	91
13.Schen	nes of Axial Forces in the Representative Elements of the Structure	92
13.1.	Object 1	92
13.2.	Object 2	94
13.3.	<i>Gym</i>	96
14.Schen	nes of the Reinforcement Results from the Most Unfavorable Combination	97
14.1.	Object 1	97
14.2.	Object 2	104
14.3.	<i>Gym</i>	110
15.Perce	ntage of Reinforcement in the R/C Walls	111
15.1.	Object 1	111
15.2.	Object 2	112
16.Concl	usions	117

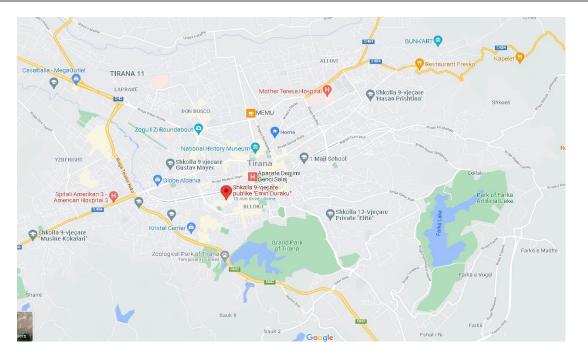
"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

1. Introduction

The construction site of this building is located in "Gjin Bue Shpata" street, Tirana.



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

The structure of "Reconstruction of 9-Year School "Emin Duraku", Tirana Municipality" is composed of two buildings. "Emin Duraku" school, Tirana, was damaged by the earthquake of November 26, 2019 and was declared unusable. The new school building is composed of two structures separated by joints expansion. The gym and entrance are also new structures

The four buildings will be subject of this technical report.

2. General Description of the Structural Calculations

2.1. General Description of the Calculations

The structural system applied is represented by a spatial frame which is connected constructively with cross reinforced concrete beams, which are the principal elements in supporting the vertical and the horizontal loads.

The structures have been analyzed, calculated and dimensioned according to the European Norms of Design of reinforced concrete and steel:

➢ EuroCode 0

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

- ➢ EuroCode 1
- ➢ EuroCode 2
- ➢ EuroCode 7
- ➢ EuroCode 8

The structural analyze it is also based on:

- Architectonical Design
- Geological and Geotechnical Report
- Engineering- Seismological Report

The calculation of the structures is done by modeling them with Etabs and Sap2000 software. In these software's the modeling is made with planes. This means that the dimensions of the elements (like beams, columns walls etc) are determined for each floor and level of altitude, always having a spatial view of the structures. The determination of loads is done as shell elements, but there are also other options like uniformly loads and concentrated loads.

After deterring the geometry of the structure and of the loads (both processes are being made at the same time), we determine the type of analysis (static, pseudo static, dynamic, etc) also the calculating method.

2.2. Design Working Life:

The longevity of the building is determined by Eurocode 0 2.3 Table 2.1 and is 50 years:

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Table 2.1 - Indicative design working life

Design working life category	Indicative design working life	Examples					
	(years)						
1	10	Temporary structures (1)					
2	10 to 25	Replaceable structural parts, e.g. gantry girders,					
		bearings					
3	15 to 30	Agricultural and similar structures					
4	50	Building structures and other common structures					
5							
(1) Structures or parts of structures that can be dismantled with a view to being re-used should not be considered as temporary.							

3. <u>Materials</u>

3.1. <u>Concrete C25/30</u>

For the foundations it's been used concrete C 25/30.

Self weight

$\gamma = 24 \text{ kN/m}^3$	
------------------------------	--

(EN1-Annex -A Tab. A.1)

Characteristic compressive cubic strength of concrete at 28 days

 $f_{cu} = 30 \text{ MPa.}$ (EN2-3.1.3 Tab. 3.1)

Characteristic compressive cylinder strength of concrete at 28 days

$f_{ck} = 25 \text{ MPa.}$	(EN2-3.1.3 Tab. 3.1)
Modulus of elasticity of concrete $E_c=31$ GPa.	(EN2-3.1.3 Tab. 3.1)
	(11.2 5.115 140. 5.1)

Design value of concrete compressive strength

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

fcd = 16.67 MPa.	(EN2-3.1.6)
ku:fcd = α cc * fck / yc	(EN2-3.1.6)
$y_{c} = 1.5$	(EN-8 -3.3.3.1 Tabela 3.1)

Table 2.1N: Partial factors for materials for ultimate limit states

Design situations	$\gamma_{\rm C}$ for concrete	75 for reinforcing steel	$\gamma_{\rm S}$ for prestressing steel
Persistent & Transient	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

 $\alpha_{cc} = 0.8-1$

 $f_{ctm} = 0.3 \ x \ f_{ck} \wedge (2/3) = 2.6 \text{ MPa.}$ $(f_{ctk} 0.05=0.7 \text{ x } f_{ctm}) = 1.8 \text{ MPa.}$

Poisson coefficient

v=0.2

3.2. Concrete C30/37

C30 / 37 concrete was used for the other elements

Self weight

 $\gamma = 24 \text{ kN/m3}$ (EN1-Annex -A Tab. A.1)

Characteristic compressive cubic strength of concrete at 28 days

 $f_{cu} = 37$ MPa. (EN2-3.1.3 Tab. 3.1)

Characteristic compressive cylinder strength of concrete at 28 days

 $f_{ck} = 30$ MPa.

(EN2-3.1.3 Tab. 3.1)

(EN2-3.1.6)

(EN2-3.1.3 Tabela 3.1)

(EN2-3.1.3 Tabela 3.1)

(EN2-3.1.3(4))

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Modulus of elasticity of concrete

 Ec=33 GPa.
 (EN2-3.1.3 Tab. 3.1)

 Design value of concrete compressive strength
 (EN2-3.1.6)

 $f_{cd} = 20$ MPa.
 (EN2-3.1.6)

 $ku: f_{cd} = \alpha_{cc} * f_{ck} / y_c$ (EN2-3.1.6)

 $y_c = 1.5$ (EN-8 -3.3.3.1 Tabela 3.1)

Table 2.1N: Partial factors for materials for ultimate limit states

Design situations	^𝔥 for concrete	75 for reinforcing steel	$\gamma_{\rm S}$ for prestressing steel
Persistent & Transient	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

 $\alpha_{cc}=0.8-1$

$f_{ctm} = 0.3 \ x \ f_{ck} \wedge (2/3) = 2.9 \text{ MPa.}$	(EN2-3.1.3 Tabela 3.1)
$(f_{ctk} 0.05=0.7 \text{ x } f_{ctm}) = 2.03 \text{ MPa.}$	(EN2-3.1.3 Tabela 3.1)

Poisson coefficient

v=0.2

(EN2-3.1.3(4))

(EN2-3.1.6)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

EN 1992-1-1:2004 (E)

Analytical relation / Explanation			$t_{crr} = t_{cr} + 8(MPa)$	$f_{drs} = 0.30 \times f_{k} (^{250} \le C 50.80$ $f_{drs} = 2, 12 \cdot \ln(1 + (f_{cs}' \cdot 10))$ > C 50'60	$f_{dx,0.05} = 0.7 \times f_{dw}$ 5% fractile	f _{akoss} = 1,3×f _{en} 95% fractile	E _{cn} = 22((<i>t</i> _{cn})/10) ^{0.3} <i>ψ</i> _{cn} in MIPa)	see Figure 3.2 _{&1} (⁰ t ₁₀) = 0.7 <i>t</i> _{0**} ⁰³¹ < 2.8	see Figure 3.2 tort _{& ≥} 50 Mpa 	see Figure 3.3 for f _{&} ≥ 50 Mpa _{€⊲} (¹ \" ₀)=2,0+0,085(f _{&} =50) ⁰⁵³	see Figure 3.3 for f _{ek} ≥ 50 Mpa _{6-co} (^{1/m})=2,6+35([90-f _{co})/100] [*]	for f _o ≥ 50 Mpa n=1,4+23,4[(90- f _o)/100] ⁴	see Figure 3.4 for f ₀ ≥ 50 Mpa fco(¹ ₁₀)=1,75+0,55[(f ₀ -50)40]	see Figure 3.4 for f _{4x} ≥ 50 Mpa s _{euo} (¹ / ₁₀)=2,6+35[(904 ₆₄)/100] ⁴		
	06	105	86	5,0	3,5	6,6	4	2,8	2,8	2,6	2,6	1,4	2,3	2,6		
	80	95	88	4,8	3,4	6,3	42	2,8	2,8	2,5	2,6	1,4	2,2	2,6		
	70	85	78	4,6	3,2	6,0	41	2,7	2,8	2,4	2,7	1,45	2,0	2,7		
	60	75	68	4'4	3,1	5,7	39	2,6	3,0	2,3	2,9	1,6	1,9	2,9		
	55	67	63	4,2	3,0	5,5	38	2,5	3,2	2,2	3,1	1,75	1,8	3,1		
ncrete	50	60	58	4,1	2,9	5,3	37	2,45								
Strength classes for concrete	45	55	23	3,8	2,7	4,9	36	2,4								
sses 1	40	<mark>20</mark>	48	3,5	2,5	4,6	8	2,3								
jth cla	35	45	43	3,2	2,2	4,2	34	2,25								
Streng	30	37	38	2,9	2,0	3,8	ŝ	2,2	3,5	2,0	3,5	2,0	1,75	3,5		
	25	30	33	2,6	1,8	3,3	31	2,1								
	20	25	28	2,2	1,5	2,9	30	2,0								
	16	20	24	1,9	1,3	2,5	29	1,9								
	12	15	20	1,6	1'. 1	2,0	27	1,8								
	f _{ók} (MPa)	f _{ckcube} (MPa)	f _{an} (MPa)	$f_{\rm dm}$ (MPa)	f _{ck. 0.05} (MPa)	f _{dk.0.05} (MPa)	Em (GPa)	Ec1 (%=)	Ecut (%a)	\mathcal{E}_{22} (%)	Ea12 (%=)	u	Ec3 (%e)	Eaus (%a)		

Table 3.1 Strength and deformation characteristics for concrete

3.3. Environmental Condition

> The environmental conditions taken into consideration for the slabs are XC1

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

- The environmental conditions taken into consideration for the foundation tiles and the walls of the basement are XC2
- > The environmental conditions taken into consideration for beams and columns are XC3

Class designation	Description of the environment	Informative examples where exposure classes may occur
-	f corrosion or attack	may occur
1 NO IISK O	For concrete without reinforcement or	
XO		
×0	embedded metal: all exposures except where there is freeze/thaw, abrasion or chemical	
	attack	
	For concrete with reinforcement or embedded	
	metal: very dry	Concrete inside buildings with very low air humidity
2 Corrosio	n induced by carbonation	Correction interact buildings that you'r on that han
XC1	Dry or permanently wet	Concrete inside buildings with low air humidity
	biy of pointering not	Concrete permanently submerged in water
XC2	Wet, rarely dry	Concrete surfaces subject to long-term water
1000	real, railory ary	contact
		Many foundations
XC3	Moderate humidity	Concrete inside buildings with moderate or high air
	-	humidity
		External concrete sheltered from rain
XC4	Cyclic wet and dry	Concrete surfaces subject to water contact, not
		within exposure class XC2
3 Corrosio	n induced by chlorides	
XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides
XD2	Wet, rarely dry	Swimming pools
		Concrete components exposed to industrial waters
		containing chlorides
XD3	Cyclic wet and dry	Parts of bridges exposed to spray containing
		chlorides
		Pavements
		Car park slabs
	n induced by chlorides from sea water	
XS1	Exposed to airborne salt but not in direct	Structures near to or on the coast
	contact with sea water	
XS2	Permanently submerged	Parts of marine structures
XS3	Tidal, splash and spray zones	Parts of marine structures
5. Freeze/Th		
XF1	Moderate water saturation, without de-icing	Vertical concrete surfaces exposed to rain and
	agent	freezing
XF2	Moderate water saturation, with de-icing agent	Vertical concrete surfaces of road structures
		exposed to freezing and airborne de-icing agents
XF3	High water saturation, without de-icing agents	Horizontal concrete surfaces exposed to rain and
1000		freezing
XF4	High water saturation with de-icing agents or	Road and bridge decks exposed to de-icing agents
	sea water	Concrete surfaces exposed to direct spray
		containing de-icing agents and freezing Splash zone of marine structures exposed to
		splash zone of manne structures exposed to freezing
6. Chemical	attack	needing
XA1		Natural collo and around water
	Slightly aggressive chemical environment according to EN 206-1, Table 2	Natural soils and ground water
XA2	Moderately aggressive chemical environment according to EN 206-1, Table 2	Natural soils and ground water
XA3	Highly aggressive chemical environment according to EN 206-1, Table 2	Natural soils and ground water

Table 4.1: Exposure classes related to environmental conditions in accordance with EN 206-1

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

According to the rate of exposition of the table above has been determined the minimal Class of the concrete for the structure.

Exposure classes EN

(EN-2-Annex -E Table E.1.N)

Table E.1N: Indicative strength classes

	Exposure Classes according to Table 4.1										
Corrosion											
	Carbonation-induced corrosion				Chloride	-induce	ed corrosion		Chloride-induced corrosion from sea-water		
	XC1	XC2	XC	3 XC4	XD1	XD	2 XD3	XS1	XS2	XS3	
Indicative Strength Class	C20/25	C25/30	C30/37		C30/37		C35/45	C30/37	C3	5/45	
Damage to Concrete	Damage to Concrete										
	No risk Freeze/Thaw Attack				Chemical Attack						
	X0	XF1		XF2	XF3	3	XA1	XA2	X	A3	
Indicative Strength Class	C12/15	C30/3	37	C25/30	C30/3	37	C30	/37	C3	5/45	

For the foundations it will be used the C25/30 concrete

For the columns, walls, beams, staircases and slabs will be used the C30/37 concrete.

3.4. Defining the Cover of the Concrete

It has been determined according to the Eurocode (Eurocode 2- 4.4.1.2 Table 4.3.N) the classification of the structure for the reduction or the increase of the class of the structure based on the level of exposure of the concrete class:

Structural Class									
Criterion	Exposure Class according to Table 4.1								
Criterion	XO	XC1	XC2/XC3	XC4	XD1	XD2 / XS1	XD3/XS2/XS3		
Design Working Life of	increase	increase	increase	increase	increase	increase	increase class		
100 years	class by 2	class by 2	class by 2	class by 2	class by 2	class by 2	by 2		
Strength Class 1) 2)	≥ C30/37	≥ C30/37	≥ C35/45	≥ C40/50	≥ C40/50	≥ C40/50	≥ C45/55		
	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by		
	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1		
Member with slab	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by		
geometry	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1		
(position of reinforcement									
not affected by construction process)									
Special Quality	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by		
Control of the concrete	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1		
production ensured	-	-		-	-	-			

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

According to the table above, the structure is classified as S-4 structure (Eurocode 2 4.4.1.2 Table 4.4.N)

Table 4.4N: Values of minimum cover, *c*_{min,dur}, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Environmenta	Environmental Requirement for c _{min.dur} (mm)										
Structural	Exposu	Exposure Class according to Table 4.1									
Class	X0	XC1	XC2/XC3	XC4	XD1 / XS1	XD2 / XS2	XD3 / XS3				
S1	10	10	10	15	20	25	30				
S2	10	10	15	20	25	30	35				
S3	10	10	20	25	30	35	40				
S4	10	15	25	30	35	40	45				
S 5	15	20	30	35	40	45	50				
S 6	20	25	35	40	45	50	55				

Also, according to the Eurocode (Eurocode 2 4.4.1.2 formula 4.2) it has been determinate the minimum concrete cover value:

 $c_{\min} = \max \{ c_{\min,b}; c_{\min,dur} + \Delta c_{dur,y} - \Delta c_{dur,st} - \Delta c_{dur,add}; 10 \text{ mm} \}$ (4.2)

Where $c_{\min,b}$ is determined according to Eurocode:

(Eurocodi 2 4.4.1.2 Tabela 4.2)

Table 4.2: Minimum cover, cmin,b, requirements with regard to bond

Arrangement of bars	Minimum cover cmin.b*
Separated	Diameter of bar
Bundled	Equivalent diameter (ϕ_n) (see 8.9.1)

And $c_{min,dur}$ is determined according to the Eurocode (Eurocode 2 4.4.1.2 Table 4.2.N)

According to all the above information we have considered for our structure the minimum concrete cover value:

- \triangleright 20 mm for the slabs and staircases,
- > 30mm for the beams, reinforced concrete walls and columns
- \succ 40 mm for the foundation beams.

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

3.5. Reinforced Steel

According to the Eurocode 2 and 8 the reinforcement will be of class C with these properties:

Table C.1: Properties of reinforcement

Product form	Bars a	nd de-coi	led rods	١	Wire Fabrie	Requirement or quantile value (%)	
Class	А	В	с	А	В	С	-
Characteristic yield strength f_{yk} or $f_{0,2k}$ (MPa)	400 to 600						5,0
Minimum value of $k = (f_t f_y)_k$	≥1,05	≥1,08	≥1,15 <1,35	≥1,05	≥1,08	≥1,15 <1,35	10,0
Characteristic strain at maximum force, <i>E</i> _{uk} (%)	≥2,5	≥5,0	≥7,5	≥2,5	≥5,0	≥7,5	10,0
Bendability	Bend/Rebend test				-		
Shear strength Maximum Nominal		-		0,3 A f _{vk} (A is area of wire)			Minimum
Maximum Nominal deviation from bar size (mm) nominal mass ≤ 8 (individual bar > 8 or wire) (%)			5,0				

Table C.2N: Properties of reinforcement

Product form	Bars a	ars and de-coiled rods Wire Fabrics			Requirement or quantile value (%)			
Class		Α	В	С	А	В	С	-
Fatigue stress range (MPa) (for N \ge 2 x 10 ⁶ cycles) with an upper limit of βf_{vk}		≥150			≥100			10,0
Bond: Minimum relative rib area, f _{R.min}	Nominal bar size (mm) 5 - 6 6,5 to 12 > 12			0,0	035 040 056			5,0

The reinforcement of the structure BSt-500s type with the following properties:

Self weight

 $\gamma=78.5 \ kN/m3$

(EN-1-Annex -A Tab. A.4)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Characteristic yield strength of reinforcement

 $f_{yk} = 500 \text{ Mpa}$

Characteristic tensile strength of reinforcement

 $f_{tk} = 600 \text{ MPa}$

Modulus of elasticity of steel

 $E_c=\ 200\ GPa$

The coefficient of relative extension > 12 %

As>12%

 $(f_{tk}/f_{yk}) = 1.2$

Partial factor for reinforcing steel:

 $\gamma_s = 1.15$

(EN-8 -3.3.3.1Tabela 3.1)

(EN-2-3.2.7 (4))

Table 2.1N: Partial factors for materials for ultimate limit states

Design situations	/℃ for concrete	75 for reinforcing steel	$\gamma_{\rm S}$ for prestressing steel
Persistent & Transient	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

Design yield strength of reinforcement

 $f_{yd} = 43.47 \ kN/cm2$

 $f_{yd} = f_{yk}\!/\!\gamma_s$

(EN-2-3.2.7)

3.6. Steel Structure

Structural steel is made of weldable carbon of type S-355 with below charachteristics:

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Self weight

$$\begin{split} &\gamma = 7850 \text{ Kg/m}^3 & (\text{EN-1-Annex -A Tab. A.4}) \\ &f_u = 430 \text{ N/mm}^2 \\ &\text{Characteristic yield strength of reinforcement} \\ &f_y = 275 \text{ N/cm}^2 \\ &\text{Modulus of elasticity of steel} \\ &E_s = 210000 \text{ N/cm}^2 & (\text{EN-2-3.2.7 (4)}) \\ &(f_u/f_y) >= 1.1 \\ &\text{Partial factor for reinforcing steel:} \\ &\gamma_s = 1.15 & (\text{EN-8 -3.3.3.1Tabela 3.1}) \end{split}$$

Design yield strength of reinforcement:

 $f_{yd} = 308.7 \text{ N/cm}^2$

Design Strength for concrete, steel and structural steel is by reducing its charachteristic strength with partial factor:

$f_{cd} = f_{ck} / \gamma_c$	(EC2-3.1.6)
$f_{yd} = f_{yk} / \gamma_s$	(EC2-3.2.7)

where; γ_s = Partial factor for reinforcing steel = 1.15, (EN-3 2.4.2.4)

and γ_c = Partial factor for reinforcing steel = 1.5 (EN-2 2.4.2.4)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Table 3.1: Nominal values of yield strength fy and ultimate tensile strength fu forhot rolled structural steel

Standard	Nominal thickness of the element t [mm]							
and	t≤40	0 mm	$40 \text{ mm} < t \le 80 \text{ mm}$					
steel grade	f _y [N/mm ²]	$f_u [N/mm^2]$	$f_y [N/mm^2]$	f_u [N/mm ²]				
EN 10025-2								
S 235	235	360	215	360				
S 275	275	430	255	410				
S 355	355	510	335	470				
S 450	440	550	410	550				
EN 10025-3								
S 275 N/NL	275	390	255	370				
S 355 N/NL	355	490	335	470				
S 420 N/NL	420	520	390	520				
S 460 N/NL	460	540	430	540				
EN 10025-4								
S 275 M/ML	275	370	255	360				
S 355 M/ML	355	470	335	450				
S 420 M/ML	420	520	390	500				
S 460 M/ML	460	540	430	530				
EN 10025-5								
S 235 W	235	360	215	340				
S 355 W	355	510	335	490				
EN 10025-6								
S 460 Q/QL/QL1	460	570	440	550				

3.6.1. <u>Dimensioning of Main Elements of Steel Structure</u>

- The steel structure of the Gym is made of two IPE 330 main beams joined by a tyrant 150X150x4 mm and of which connects t with the reinforced concrete columns. The main beams are connecting with the each other with secondary beams IPE 220. The gym columns are reinforced concrete.
- The steel structure of the Entrance is composed of several elements; The main beams are created from plates with thicknesses of 10,12,15 and 20 mm. These beams are connected to each other with elements IPE240 and IPE270. The entrance columns are reinforced concrete

Details of the steel elements of the gym and entrance are given in the detailed drawings that accompany this report. After calculation the below facts were controlled:

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

a.	Bending		
	$M_{\text{Ed}}\!/M_{\text{c, Rd}}\!\!\leq\!\!1$	(6.10)	(EC3 6.2.5)
	Where:		
	M _{Ed} - maximal moment	from loads	
	M _{c,Rd} - maximal capacit	y moment	
	$M_{c,Rd} = \ddot{E}_{pl} f_y / \gamma_{M0}$		(EC3 6.2.5)
b.	Shearing:		
	$V_{Ed}\!/V_{c,Rd}\!\leq 1$	(6.12)	(EC3 6.2.6)
	$V_{c,Rd} = A_v (f_y/\sqrt{3})/\gamma_{M0}$		
	$A_v = 1.2 \ h_{\ddot{e}} \ x \ t_{\ddot{e}}$		(EC3 6.2.6)
	Where:		
	$h_{\ddot{e}}$ - width of flange elem	nents	
	t _ë - thickness of flange e	lements	
	Flements of joints conn	ections (plate) will be made of st	el with characteristic strength not

Elements of joints connections (plate) will be made of steel with characteristic strength not lower than elements that it is going to connect. Bolts and other connection elements (plated) are required to be Bolt class 10.9 (EN-3-1-83.1.1 (tabela 3.1):

Table 3.1: Nominal values of the yield strength f_{yb} and the ultimate tensile strength f_{ub} for bolts

Bolt class	4.6	4.8	5.6	5.8	6.8	8.8	10.9
$f_{\rm yb}~({ m N/mm}^2)$	240	320	300	400	480	640	900
$f_{\rm ub}~({ m N/mm}^2)$	400	400	500	500	600	800	1000

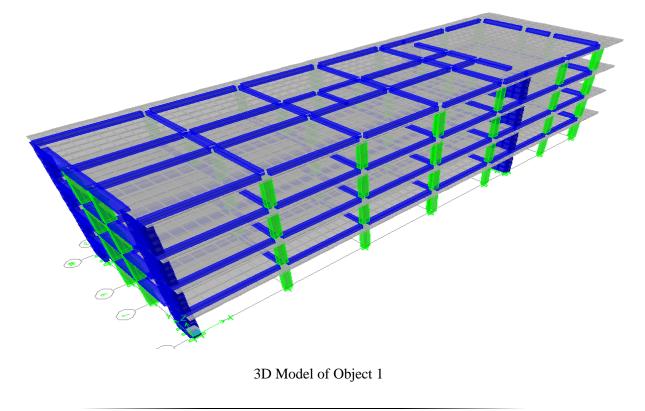
4. Computer Calculation and Analysis

4.1 Static and Dynamic Analysis

4.1.1. <u>Static Analysis</u>

The structural static analysis includes solving the system of the following linear equations:

Programme EU for Schools "Design of 9-Year School "Emin Duraku", Tirana Municipality Structural Technical Report

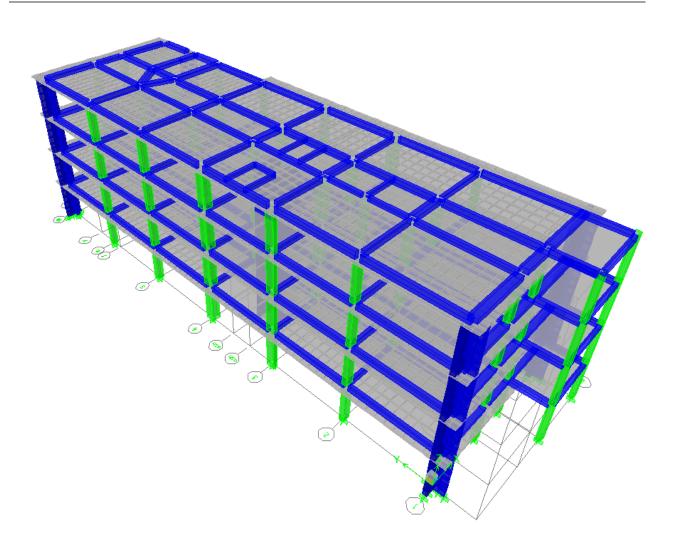

K * u = r (3.1.1)

Where: K- is the matrix of stiffness.

r- is the loads vector that acts on the structure

u- is the displacement vector.

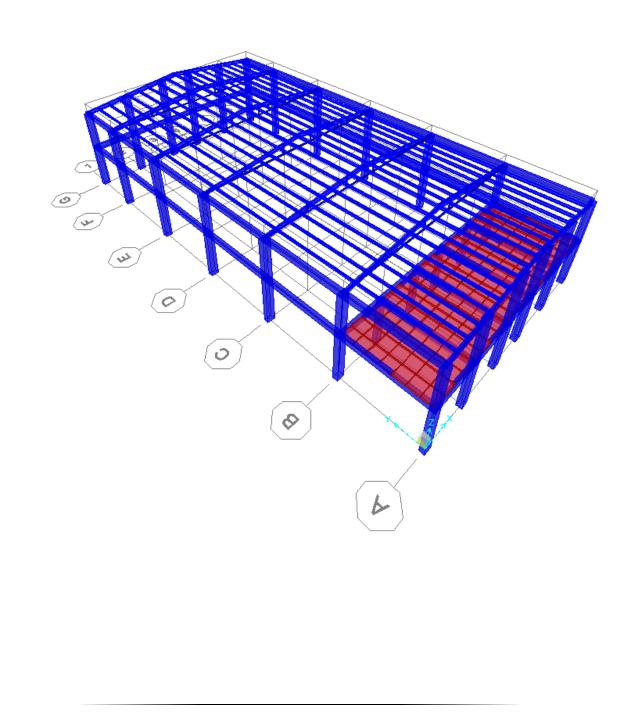
For any case of loading the program automatically creates the "r" vector and determines the displacement vector by solving the system of linear equations (3.1.1). After determining the displacements of all the nodal points it is possible to determine all the values of the generalized internal forces (M22, M33-bending moment according to two directions,Q22, Q33-shear forces according to two directions ,N- axial force , T- torsional moment for each element "frame", or F11, F22, F12-axial forces for each direction and the bending moments M11, M22, M12-in the perpendicular planes and for each planes for shell elements. Naturally the modeling of the structure and for every element in general, is made according to the finite elements method (FEM) which is an approximate and practical method used widely nowadays due to the superiority of the conditions created by the use of the software's.



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

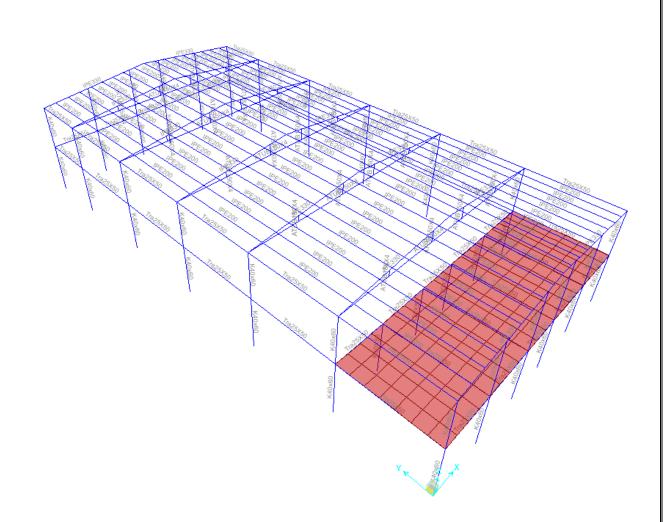
Structural Technical Report


3D Model of Object 2

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

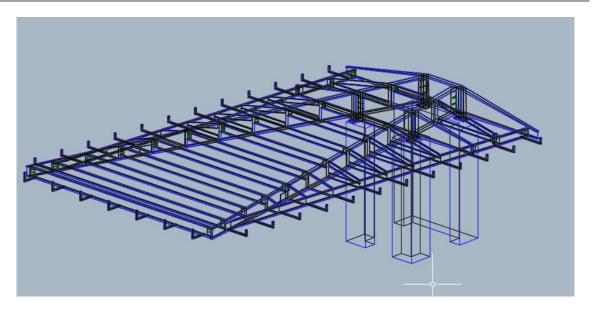
Structural Technical Report

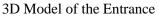


"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report


3D Model of the Gym



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

4.1.2. Dynamic Analysis

The Dynamic Analysis of the structure consists on the modal analysis with the specter of reaction method. The designed dynamic loads (seismic) are defined as static equivalent loads and are applied at the points of the concentrated masses.

5. <u>Designed Loads</u>

The following loads have been used for this structure:

5.1. Permanent Loads

Permanent loads in this structure:

Reinforced slab h=20cm:			
•	Solid reinforced slab	500 daN/m ²	
•	Concrete layers + Tiles 10 cm	180 daN/m²	
•	Suspended ceilings + HVAC installations	20 daN/m ²	

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Total	575 daN/m²
➢ Reinforced slab h=15cm:	
Solid reinforced slab	625 daN/m ²
• Concrete layers + Tiles 10 cm	180 daN/m²
• Suspended ceilings + HVAC installatio	ns 20 daN/m^2
Total	825 daN/m ²
Reinforced slab h=15cm:	
Solid reinforced slab	375 daN/m ²
• Concrete layers + Tiles 10 cm	180 daN/m²
• Suspended ceilings + HVAC installatio	ns 20 daN/m^2
Total	575 daN/m ²

Note: The loads of the foundation slab, the columns, reinforced walls and of the beams are taken in consideration from the software by using real dimensions, weight and measurements, according to the information of the materials mentioned at paragraph 3.

5.2. Vertical Linear Loads of the Walls and the other Elements

In case when we have brick walls, the load will be:

•	25cm Wall (bricks with horizontal holes + plaster)	950 daN/ml
•	12cm Wall (brick with horizontal holes + plaster)	550 daN/ml
•	Gypsum walls (drywall)	50 daN/ml
•	Reinforced concrete parapet	375 daN/ml
•	Structural facade	300 daN/ml

5.3. Imposed Loads

According to the Eurocode 1, the imposed loads for the structure are determined as:

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

C1 H

Table 6.1 Table 6.9 (EN1 -6.3.1.1) (EN-1 -6.3.4.2)

Category	Specific Use	Example
A	Areas for domestic and residential activities	Rooms in residential buildings and houses; bedrooms and wards in hospitals; bedrooms in hotels and hostels kitchens and toilets.
В	Office areas	
С	Areas where people may congregate (with the exception of areas defined under category A, B, and D ¹⁾)	 C1: Areas with tables, etc. e.g. areas in schools, cafés, restaurants, dining halls, reading rooms, receptions. C2: Areas with fixed seats, e.g. areas in churches, theatres or cinemas, conference rooms, lecture halls, assembly halls, waiting rooms, railway waiting rooms. C3: Areas without obstacles for moving people, e.g. areas in museums, exhibition rooms, etc. and access areas in public and administration buildings, hotels, hospitals, railway station forecourts. C4: Areas with possible physical activities, e.g. dance halls, gymnastic rooms, stages. C5: Areas susceptible to large crowds, e.g. in buildings for public events like concert halls, sports halls including stands, terraces and
D	Shopping areas	access areas and railway platforms. D1: Areas in general retail shops
D2: Areas in department stores ¹⁾ Attention is drawn to 6.3.1.1(2), in particular for C4 and C5. See EN 1990 when dynamic effects need to be considered. For Category E, see Table 6.3 NOTE 1 Depending on their anticipated uses, areas likely to be categorised as C2, C3, C4 may be categorised as C5 by decision of the client and/or National annex. NOTE 2 The National annex may provide sub categories to A, B, C1 to C5, D1 and D2 NOTE 3 See 6.3.2 for storage or industrial activity		

Table 6.1 - Categories of use

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

And specifically, the imposed loads are:

≻	Service facilities	3 kN /m²	Table 6.2	(EN1 -6.3.1.2)
\triangleright	Staircas facilities	3 kN /m ²	Table 6.2	(EN1 -6.3.1.2)
\triangleright	Terrace cover	1 kN /m ²	Table 6.9, 6.10	(EN1 -6.3.1.2)
\triangleright	Atrium cover	0.4 kN /m ²	Table 6.9, 6.10	(EN1 -6.3.1.2)
\triangleright	Entrance canopy	0.4 kN / m ²	Table 6.9, 6.10	(EN1 -6.3.1.2)
			EN	1991-1-1:2002 (E)

Table 6.9 - Categorization of roofs

Categories of loaded area	Specific Use
Н	Roofs not accessible except for normal maintenance and
	repair.
I	Roofs accessible with occupancy according to categories A to
	D
K	Roofs accessible for special services, such as helicopter
	landing areas

Table 6.10 - Imposed loads on roofs of category H

Roof	$\frac{q_k}{[kN/m^2]}$	Q _k [kN]
Category H	q _k	Qk
NOTE 1 For category H q_k may be selected within the range 0,00 kN/m ² to 1,0 kN/m ² and Q_k may be selected within the range 0,9 kN to 1,5 kN.		
Where a range is given the values may be set by the National Annex. The recommended values are:		
$q_k = 0.4 \text{ kN/m}^2$, $Q_k = 1.0 \text{kN}$ NOTE 2 q_k may be varied by the National Annex dependent upon the roof slope.		
NOTE 3 q_k may be assumed to act on an area A which may be set by the National Annex. The recommended value for A is 10 m ² , within the range of zero to the whole area of the roof.		
NOTE 4 See also 3.3.2 (1)		

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Categories of loaded areas	q_{k} [kN/m ²]	Q _k [kN]
Category A		
- Floors	1,5 to <u>2,0</u>	<u>2,0</u> to 3,0
- Stairs	<u>2.0 to</u> 4,0	<u>2,0</u> to 4,0
- Balconies	<u>2,5 to</u> 4,0	<u>2,0</u> to 3,0
Category B	2,0 to <u>3,0</u>	1,5 to <u>4,5</u>
Category C		
- C1	2,0 to <u>3,0</u>	3,0 to <u>4,0</u>
- C2	3,0 to <u>4.0</u>	2,5 to 7,0 (4,0)
- C3	3,0 to <u>5,0</u>	<u>4,0</u> to 7,0
- C4	4,5 to <u>5,0</u>	3,5 to 7,0
- C5	<u>5,0</u> to 7,5	3,5 to <u>4,5</u>
category D		
- D1	<u>4,0</u> to 5,0	3,5 to 7,0 (4,0)
- D2	$\overline{4,0}$ to 5.0	3,5 to 7,0

5.4. Horizontal Loads of the Parapet

According to the Eurocode the horizontal loads are being determined as it follows:

➢ Horizontal loads of the parapet
0.5 kN /ml
Tabela 6.12

EC1-6.4 (Kategoria C1)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Loaded areas	<i>q</i> k [kN/m]	
Category A	$q_{\rm k}$	
Cotorers B and Cl	$q_{\rm k}$	
Category B and C1		
Categories C2 - to C4 and D	$q_{\rm k}$	
	$q_{\rm k}$	
Category C5		
	$q_{\rm k}$	
Category E		
	See Annex B	
Category F	See Annex B	
Category G	See Annex B	
NOTE 1 For categories A, B and C1, q_k may be selected v	within the range 0.2 to 1.0	
(0.5).	artillit die funge 0,2 to 1,0	
NOTE 2 For categories C2 to C4 and D q_k may be selected	d within the range 0,8	
kN/m -to <u>1,0</u> kN/m.		
NOTE 3 For category C5 q_k may be selected within the ratio	nge <u>3,0</u> kN/m to 5,0	
kN/m. NOTE 4 For category E q_k may be selected within the rar	age 0,8 kN/m to 2,0	
kN/m. For areas of category E the horizontal loads depend on the occupancy.		
Therefore the value of q_k is defined as a minimum value and should be checked for the		
specific occupancy.		
NOTE 5 Where a range of values is given in Notes 1, 2, 3 and 4, the value may be set		
by the National Annex. The recommended value is underlined. NOTE 6 The National Annex may prescribe additional point loads $Q_{\rm b}$ and/or hard or		
soft body impact specifications for analytical or experimental verification.		

Table 6.12 - Horizontal loads on partition walls and parapets

5.5. Seismic Loads

5.5.1. Seismic Coefficients in the Structure

In the modeled structure, the seismic coefficients taken in consideration are as it follows:

According to the seismic report (Eurocode Specter I)

(EN8 -3.2.2.2)

Ground acceleration agR=0.275

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

According to the seismic report (Eurocode -8) Soil category: C

There are no risks of cracking of the land, instability of slopes and permanent decrease caused by liquefaction or compression (densification) in case of earthquake.

The topographical amplification is not taken into consideration (EN 1998-1, 3.2.2.1(6))

Importance factor: $\gamma_1 = 1.2$ Table 4.3

(EN8 -3.2.5 (Cat. III))

Table 5.1: Basic value of the behaviour factor, q_0 , for systems regular in elevation

STRUCTURAL TYPE	DCM	DCH
Frame system, dual system, coupled wall system	$3,0\alpha_u/\alpha_1$	$4,5\alpha_{\rm u}/\alpha_{\rm l}$
Uncoupled wall system	3,0	$4,0\alpha_{\rm u}/\alpha_{\rm l}$
Torsionally flexible system	2,0	3,0
Inverted pendulum system	1,5	2,0

 $q_0 = 3.0/a_u/a_1$

wall-equivalent dual, or coupled wall systems: $\alpha_u/\alpha_1=1,2.$ (EN8 -5.2.2.2, 5,b)-)

Our structure is considered irregular in the plan.

For buildings which are not regular in plan (see 4.2.3.2), the approximate value of $\alpha u/\alpha 1$ that may be used when calculations are not performed for its evaluation are equal to the average of (a) 1,0 and of (b) the value given in

In this case:

 $\alpha_u/\alpha_1=1,1$

The behavior factor of the structure by X axes	q= 3.60
The behavior factor of the structure by Y axes	q= 3.60

The structure is regular in height.

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Since our design team will also be supervising the construction of the building, rigorous implementation of the criteria will be required. This may allow us to increase the behavior factor by 20%, which we are leaving in favor of the construction:

If a special and formal Quality System Plan is applied to the design, procurement and construction in addition to normal quality control schemes, increased values of qo may be allowed. The increased values are not allowed to exceed the values given in Table 5.1 by more than 20%. (EN8 -5.2.2.2, 10)

5.5.2. <u>Design Spectrum (calculative) of the Accelerations according to EN-8 (Design of</u> <u>Structures for earthquake Resistance)</u>

The design spectrum of the horizontal seismic accelerations for horizontal seismic action according to EN-8, is obtained from the expressions:

$$0 \leq T \leq T_{B}: S_{d}(T) = a_{g} \cdot S \cdot \left[\frac{2}{3} + \frac{T}{T_{B}} \cdot \left(\frac{2.5}{q} - \frac{2}{3}\right)\right]$$

$$(4.3.2.a) (EN-8 - 3.2.2.2)$$

$$T_{B} \leq T \leq T_{C}: S_{d}(T) = a_{g} \cdot S \cdot \frac{2.5}{q}$$

$$(4.3.2.b) (EN-8 - 3.2.2.2)$$

$$T_{C} \leq T \leq T_{D}: S_{d}(T) \begin{cases} = a_{g} \cdot S \cdot \frac{2.5}{q} \cdot \left[\frac{T_{C}}{T}\right] \\ \ge \beta \cdot a_{g} \end{cases}$$

$$(4.3.2.c) (EN-8 - 3.2.2.2)$$

$$T_{D} \leq T: S_{d}(T) \begin{cases} = a_{g} \cdot S \cdot \frac{2.5}{q} \cdot \left[\frac{T_{C}T_{D}}{T^{2}}\right] \\ \ge \beta \cdot a_{g} \end{cases}$$

$$(4.3.2.d) (EN-8 - 3.2.2.2)$$

where:

S-the soil factor (note the Table 3.2 and 3.3 and the inputs of the seismic-engineering study given as above) T-the period of the linear structural system with singledegree of freedom considered.

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

 β =0.2 the lower level of the design spectrum for horizontal seismic action

The behavior factor of the structure according to - X axes q=3.0

The behavior factor of the structure according to - Y axes q=3.0

Refering to the recommandations of the (EC-8), the soil is classified as type C with these values of horizontal sprectrum parametres:

S=1.2 $T_B(s) = 0.15 T_C(s) = 0.5 T_D(s) = 2$ Tabela3.3 (EN-8 -3.2.2.2)

6. Fundamental Requirement

6.1. No Collapse Requirement

 $a_{gR}=0.275g$ is the design ground acceleration (type C of the site according to the seismic report and the Eurocode -8)

This $a_{gR}=0.275g$ given from the seismic report represents the reference seismic action associated with a reference probability of exceedance, *PNCR*=10

where $T_{\rm NCR}$ =475 γ = 1.20 (EN8 - 2.2.1)

6.2. Damage Limitation Requirement

agR=0.1116 g is the design ground acceleration (type C of the site according to the seismic report and Eurocode -8)

This a_{gR} is given from the seismic study for the damage limitation requirement and the probability of exceedance, PNCR=10

Where $P_{\text{NCR}}=95$ $\gamma=1.2$ (EN8 - 2.2.1)

To find the maximum possible value of the seismic reaction, it is used the superposition method according to the "complete quadratic combination" (CQC). This type of modal superposition gives more exact results comparing with the combination of the "square root of the sum of squares" (SRSS) for structures with values of consecutive periods (successive) close to each other.

The combination of the directions of the seismic reaction is done basing on the square root of the sum of the squares (SRSS), considering their simultaneous acceptance according to three directions.

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

The numerical values taken from the seismic spectrum of the structure, are subject to the combinations given in the paragraph 5.1.

7. <u>Designing Criteria</u>

The structure has been calculated for the Ultimate Limit States (ULS) and for the Serviceability Limit States (SLS)

The loads are combined as it follows, where:

IE - is the seismic action for the allowed state under examination,

Gt - is the characteristic value of the permanent action,

 Q_{1k} - the characteristic value of the variable action of the situation created by the loads,

 Q_{ik} - the characteristic value of the variable i,

 γ_g , γ_p and γ_q - are the factors of the partial security,

 $\psi_{0i}\text{-}$ is a combination factor which gives 95% of the value of the variable action I,

 ψ_{2i} - is the combination factor which gives the approximate value of the temporary action of the variable i.

Loads Combination

ULS

Fundamental	$\gamma_g G_k + \gamma_q \left[Q_{1k} + \Sigma i(\psi_{0i} Q_{ik}) \right]$	(EN0 -6.4.3.4 (6.10))
Seismic	$IE + G_k + \Sigma_i(\Psi_{2i}Q_{ik})$	(EN0 -6.4.3.4 (6.12b))
SLS		
Seldom	$G_k + Q_{1k} + \Sigma i(\psi_{0i}Q_{ik})$	(ENO -6.5.3 (6.14b))
Frequent	$G_{k}+\psi_{11}Q_{1k}+\Sigmai(\psi_{2i}Q_{ik})$	(ENO -6.5.3 (6.15b))
Semi permanent	$G_k + \Sigma_i(\psi_{2i}Q_{ik})$	(ENO -6.5.3 (6.16b))

Coefficients values of temporary loads combination are taken into consideration as it follows:

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

γ _g = 1.35	(Or 1 if its contribution gives more security)					
γ _q = 1.5	(Or 1 if its contribution gives more	(Or 1 if its contribution gives more security)				
$\psi_{\text{oi}}{=}~0.7,$	Tab. A1.1		(EN0- A1 2	2.2)		
$\psi_{1i} = 0.7,$	Tab.A1.1		(EN0- A1 2	2.2)		
$\psi_{2i} = 0.6,$	Tab. A1.1		(EN0- A1 2	2.2)		
	Action	¥	ψı	¥2		
	Imposed loads in buildings, category (see EN 1991-1-1)		-			
	Category A : domestic, residential areas Category B : office areas	0,7 0,7	0,5 0,5	0,3 0,3		
	Category C : congregation areas	0,7	0,7	0.6		

Category A : domestic, residential areas	0,7	0,5	0,3
Category B : office areas	0,7	0,5	0.3
Category C : congregation areas	0,7	0,7	0.6
Category D : shopping areas	0,7	0,7	0,6
Category E : storage areas	1,0	0,9	0,8
Category F : traffic area, vehicle weight ≤ 30kN Category G : traffic area,	0,7	0,7	0,6
30kN < vehicle weight < 160kN	07	0.5	03
Category H : roofs	0	0	0
Snow loads on buildings (see EN 1991-1-3)*			
Finland, Iceland, Norway, Sweden	0,70	0,50	0,20
Remainder of CEN Member States, for sites located at altitude H > 1000 m a s.l.	0,70	0,50	0,20
Remainder of CEN Member States, for sites located at altitude $H \le 1000 \text{ m a.s.l.}$	0,50	0,20	0
Wind loads on buildings (see EN 1991-1-4)	0,6	0,2	0
Temperature (non-fire) in buildings (see EN 1991-1-5)	0,6	0,5	0

Horizontal components of the seismic actions

The seismic action has been taken into consideration with both its orthogonal components, nominated as IEx and IEy, where the two respective actions of the components represent the same reaction spectrum and complete the quadratic combination (CQC) method which is used as combination of the two components.

Programme EU for Schools "Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

The two possible combinations are as it follows:

"+" E_{Edx} 0,3*E_{Edv} (EN8 -4.3.3.5.2 (4.18)) 0,3*E_{Edx} "+" E_{Edy} (EN8 -4.3.3.5.2 (4.19))

Where the '+' implies "to be combined with "

E_{EdX} represents the action effects due to the application of the seismic action along the choosen horizontal axis x of the structure.

 E_{Edy} represents the action effects due to the application of the seismic action along the chosen horizontal axis y of the structure.

(1) The internal effect of the design seismic action shall be evaluated by taking into consideration the presence of the masses associated with the gravity loads appearing in the following combinations of actions:

 $Gk + \Sigma_i(\psi_{Ei}Q_{ik})$

Where the $\psi_{\rm E}$ is the combination coefficient for the variable action i.

The minimum value of the coefficient combination ψ_{Ei} presented to calculate the effect of the seismic action will be categorized according to the following expressions:

	$\psi_{Ei} = \psi_{2i} \ge \Phi$	Tabela 4.2 (EN-8 -4.2.4)		
Roof:	$\psi_{Ei} = \psi_{2i} \ x\Phi = 0,6 \ x \ 1 = 0$,6 (EN-1-Cat C3)		
Independently occupied storey:	$\psi_{Ei} = \psi_{2i} \ge \Phi = 0.6 \ge 0.5 = 0.6$	0.3 (EN1-Cat C3)		
Stairs :	$\psi_{Ei} = \psi_{2i} \ge \Phi = 0.6 \ge 0.8 \ge 0.6 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = $	0,48 (EN1-Cat C3)		

Type of variable action	Storey	arphi
Categories A-C*	Roof	1,0
	Storeys with correlated occupancies	0,8
	Independently occupied storeys	0,5
Categories D-F [*] and Archives		1,0

(EN8 - 3.2.4 (3.17))

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

7.1. Ultimate Limit State ULS

As the design criteria of this limit state, is the supporting from the structure of a strong earthquake relatively rare, with not strong structural damages as subversion, sliding or total demolition, which may be a risk for the human life. The spectral parameters of this earthquake "the design earthquake", correspond to a repetition period of 475 years and to a non-excess probability of 90% and to a 50 years period of time, given in the forth point. The structure after the earthquake preserves its integrity and considerable bearing capacity.

The combination of the loads is given according to the table:

lit 🛛	View					
	Load Combination					
	Combo	Туре	Case	Factor	CaseType	SortID
•	COMB1	ADD	DEAD	1.0000	Static	1
	COMB1		LIVEAMBIENTE	0.6000	Static	2
	COMB1		LIVETARACE	0.6000	Static	3
	COMB1		LIVESHKALLE	0.6000	Static	4
	COMB1		SPEKX	1.0000	Spectrum	5
	COMB2	ADD	DEAD	1.0000	Static	6
	COMB2		LIVEAMBIENTE	0.6000	Static	7
	COMB2		LIVETARACE	0.6000	Static	8
	COMB2		LIVESHKALLE	0.6000	Static	9
	COMB2		SPEKY	1.0000	Spectrum	10
	DCON2	ADD	DEAD	1.3500	Static	11
	DCON2		LIVEAMBIENTE	1.5000	Static	12
	DCON2		LIVETARACE	1.5000	Static	13
	DCON2		LIVESHKALLE	1.5000	Static	14
	DCON3	ADD	DEAD	1.0000	Static	15
	DCON3		LIVEAMBIENTE	0.3000	Static	16
	DCON3		LIVETARACE	0.3000	Static	17
	DCON3		LIVESHKALLE	0.3000	Static	18
	DCON3		SPEKX	1.0000	Spectrum	19
	DCON4	ADD	DEAD	1.0000	Static	20
	DCON4		LIVEAMBIENTE	0.3000	Static	21
	DCON4		LIVETARACE	0.3000	Static	22
	DCON4		LIVESHKALLE	0.3000	Static	23
	DCON4		SPEKY	1.0000	Spectrum	24
	DCON5	ADD	DEAD	1.0000	Static	25
	DCON5		SPEKX	1.0000	Spectrum	26
	DCON6	ADD	DEAD	1.0000	Static	27
	DCON6		SPEKY	1.0000	Spectrum	28

For the determination of the inputs, as it is described above, the calculation of the structure is done

7.2. <u>Importance Classes for Buildings, Importance Factor and Behaviour Factor</u> According to EN-8 the building is classified as:

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Building whose integrity during earthquakes is of vital importance for civil protection (e.g. schools, assembly halls, cultural institutions etc)

Coefficient of importance of the building: **1.2** Table 4.3 (EN8 -3.2.5 (Kat. IV))

Importance class	Buildings
Ι	Buildings of minor importance for public safety, e.g. agricultural buildings, etc.
II	Ordinary buildings, not belonging in the other categories.
III	Buildings whose seismic resistance is of importance in view of the consequences associated with a collapse, e.g. schools, assembly halls, cultural institutions etc.
IV	Buildings whose integrity during earthquakes is of vital importance for civil protection, e.g. hospitals, fire stations, power plants, etc.

7.3. Criteria for Structural Regularity

1. Structural regularity in plan:

The structure we are analyzing is not regular in the plan because:

The plan configuration shall be compact, i.e., each floor shall be delimited by a polygonal convex line. If in plan set-backs (re-entrant corners or edge recesses) exist, regularity in plan may still be considered as being satisfied, provided that these set-backs do not affect the floor in-plan stiffness and that, for each set-back, the area between the outline of the floor and a convex polygonal line enveloping the floor does not exceed 5 % of the floor area. (EN8 -4.2.3.2. (3)

2. Criteria for regularity in elelvation

To determine the regularity in elevation started from the following point:

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

(3) Both the lateral stiffness and the mass of the individual stories shall remain constant or reduce gradually, without abrupt changes, from the base to the top of a particular building. (EN8 -4.2.3.3. (3)

In eurocode do not suggest or recommended a quantitative critter for reducing stiffness and mass at height, we consider the structure to be relatively regular.

In our judgment the structure can be considered relatively regular in height.

To take this fact into account we have reduced the behavioral factor by 10%.

7.4. The Behaviour Factor of the Structure

The behavior factor in the object is calculated by the following expression:

 $q=q_0k_w>1.5$ (5.1) (EN8 -5.2.2.2)

Ku:

 q_0 – according to the recommendation of the Eurocode is taken for mixed structures, for DCM (Medium Ductility) is equal to 3.0 α_u / α_1 ,

$k_w = 1$	(5.2)		(EN-8 -5.2.2.2)
q=3.0 α_u / α_1		Table 5.1	(EN-8 -5.2.2.2)

Table 5.1: Basic value of the behaviour factor, q_0 , for systems regular in elevation

STRUCTURAL TYPE	DCM	DCH
Frame system, dual system, coupled wall system	$3,0\alpha_u/\alpha_1$	$4,5\alpha_{\rm u}/\alpha_{\rm l}$
Uncoupled wall system	3,0	$4,0\alpha_{\rm u}/\alpha_{\rm l}$
Torsionally flexible system	2,0	3,0
Inverted pendulum system	1,5	2,0

 $\alpha_u / \alpha_1 = 1.2$ wall-equivalent wall system

so, q=3.0*1.20=3.60

The behavior Factor of the structure by X and by Y axis is q = 3.60

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Our structure is classified as "wall - equivalent" dual system in the direction X and Y

7.5. Accidental Torsional Effects

In order to account for uncertainties in the location of masses and in the spatial variation of the seismic motion, the calculated centre of mass at each floor i shall be considered as being displaced from its nominal location in each direction by an accidental eccentricity:

 $e_{1i} = \pm 0.05 L_i$

(EN-8 -4.3.2 (4.3))

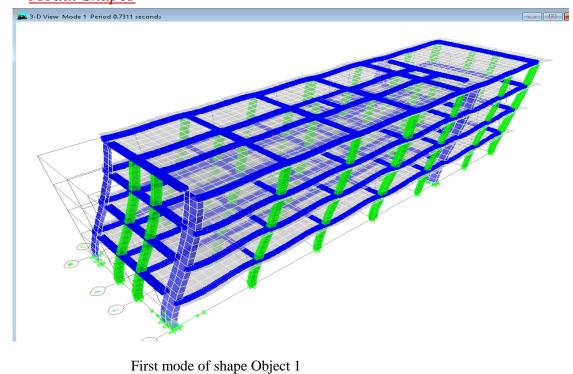
where: e_{ii} - is the accidental eccentricity of storey mass *i* from its nominal location, applied in the same direction at all floors

L_i - is the floor dimension perpendicular to the direction of the seismic action.

<u>The Table of the Modal Participation Factor and the Modal Shape</u> The Table of the Modal Participation Factor

Vie	2007									
Modal Participation Factors										
	Mode	Period	UX	UY	UZ	RX	RY	RZ	ModalMass	ModalStiff
	1	0.731082	-621.484313	-1.789334	2.014328	22.706747	-7467.18538	76.083061	1.000000	73.863204
	2	0.672878	3.417867	-566.962171	0.172710	7096.130142	41.125372	2876.165342	1.000000	87.194006
	3	0.582387	4.364282	189.852597	-0.235634	-2295.515281	59.506463	8773.792474	1.000000	116.395421
	4	0.227759	-46.955184	0.124642	88.676237	-7.308766	-1485.456839	5.860001	1.000000	761.041927
	5	0.224301	-228.181166	-0.131825	-24.002855	4.574339	537.942058	21.883377	1.000000	784.686923
	6	0.179509	-0.491930	0.084915	63.942727	-5.005508	-1091.747500	0.809720	1.000000	1225.150856
	7	0.178215	0.330973	-267.586404	-0.374818	476.848694	6.041927	853.758056	1.000000	1242.996247
	8	0.176264	0.088587	-0.856366	-106.981091	10.082437	1837.557983	3.916212	1.000000	1270.665182
	9	0.174161	5.507416	1.073256	-118.466439	7.170083	2032.919888	-10.964186	1.000000	1301.536461
	10	0.158197	1.003639	52.202171	0.620779	-90.420099	1.779000	4038.606979	1.000000	1577.487022
	11	0.124678	0.872162	-18.886013	0.603728	-416.781272	0.435230	-347.177547	1.000000	2539.674210

The table of the modal participation factor Object 1

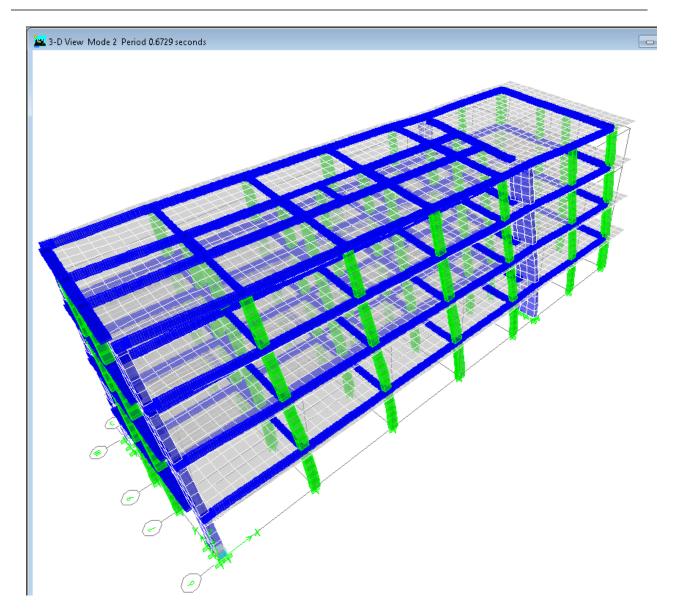

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

t V	/iew										
		Modal Participation Factors									
	Mode	Period	UX	UY	UZ	RX	RY	RZ	ModalMass	ModalStiff	
	1	0.664850	239.195785	-566.080848	0.258857	6896.891872	2956.918751	1192.705716	1.000000	89.312454	
	2	0.614081	471.084223	247.088898	-1.347585	-3000.091124	5884.182028	4815.218312	1.000000	104.690906	
	3	0.579635	302.564828	55.586392	1.564383	-670.130913	3756.925957	-8460.34610	1.000000	117.503298	
	4	0.186835	64.337767	-253.186497	-1.747242	269.407568	82.294297	-41.677424	1.000000	1130.95079	
	5	0.160357	174.743643	33.661993	2.789314	-22.484683	310.082743	3385.672203	1.000000	1535.26320	
	6	0.152526	213.007137	61.242035	-2.619444	-229.127943	399.455540	-2779.552002	1.000000	1696.95945	
	7	0.108214	0.161296	0.127108	-19.045023	-533.994676	-128.040785	-9.392428	1.000000	3371.288626	
	8	0.104194	-0.999346	-12.272079	140.332244	-2864.503552	166.171415	-22.285878	1.000000	3636.424323	
	9	0.102843	1.361346	5.929256	-247.365895	-2137.801517	-823.581231	-30.624468	1.000000	3732.589033	
	10	0.100702	-2.062742	8.886502	-6.225565	784.431010	137.936426	4.583133	1.000000	3892.975280	

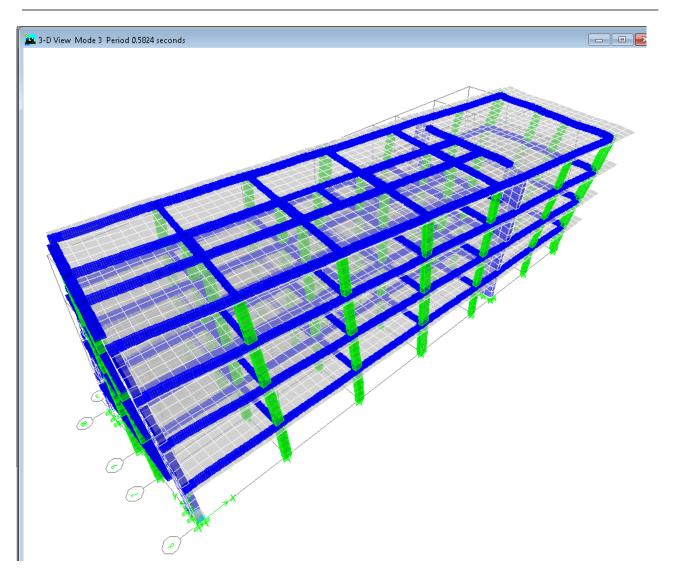
The table of the modal participation factor Object 2


8.2. <u>Modal Shapes</u>

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

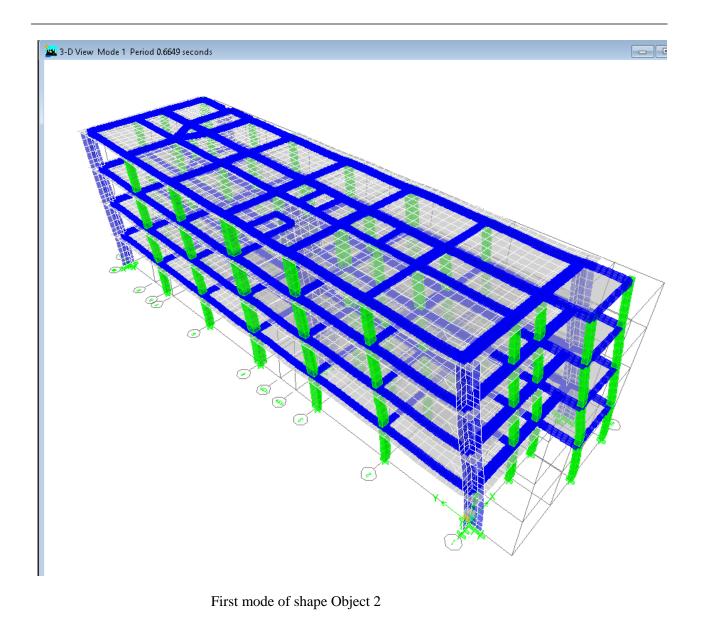
Structural Technical Report


Second mode of shape Object 1

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

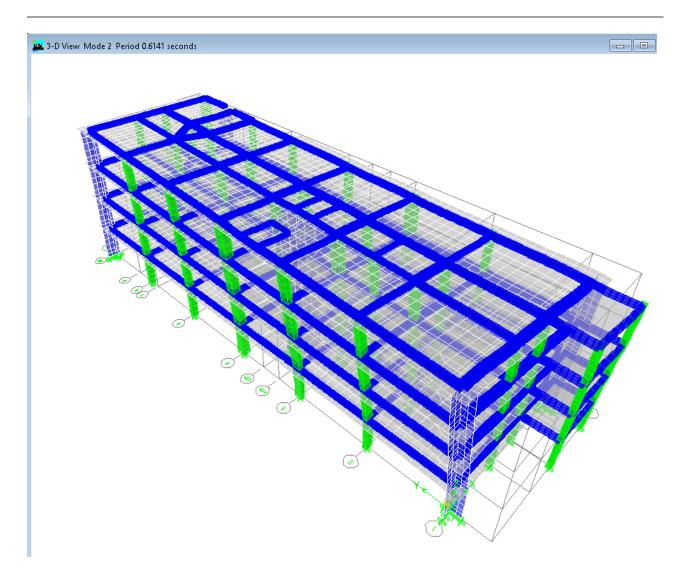
Structural Technical Report



Third mode of shape Object 1

"Design of 9-Year School "Emin Duraku",

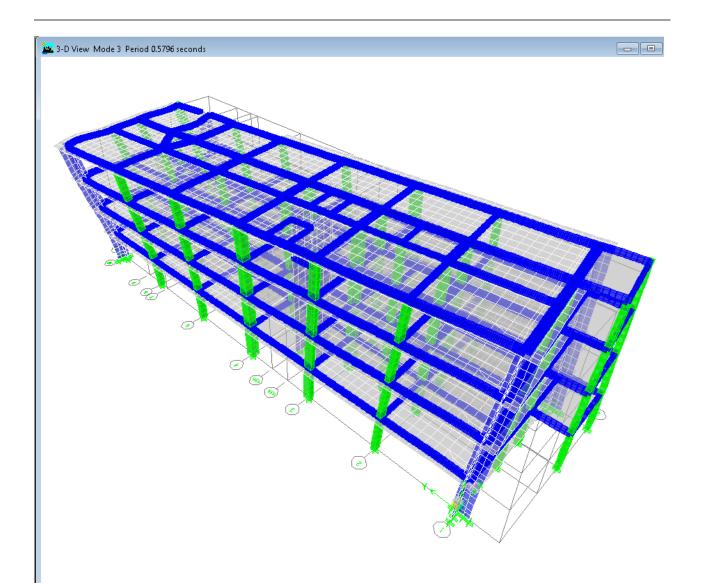
Tirana Municipality



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

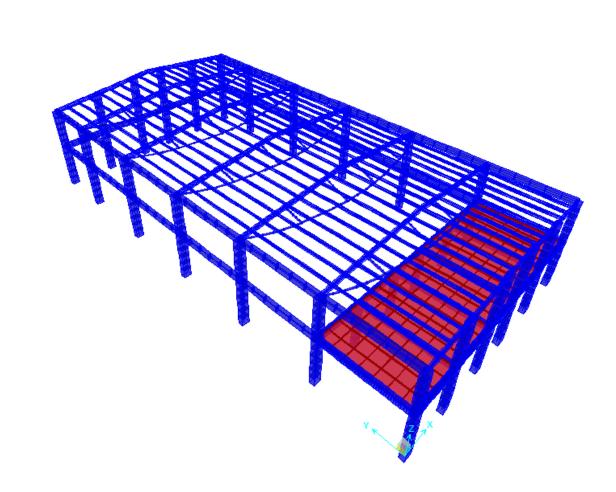

Second mode of shape Object 2

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Third mode of shape Object 2



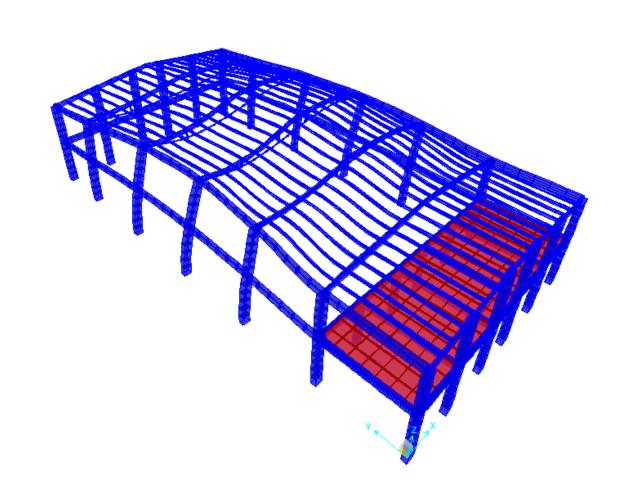
"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

K Deformed Shape (MODAL) - Mode 1; T = 0.54461; f = 1.83618

First mode of shape Gym



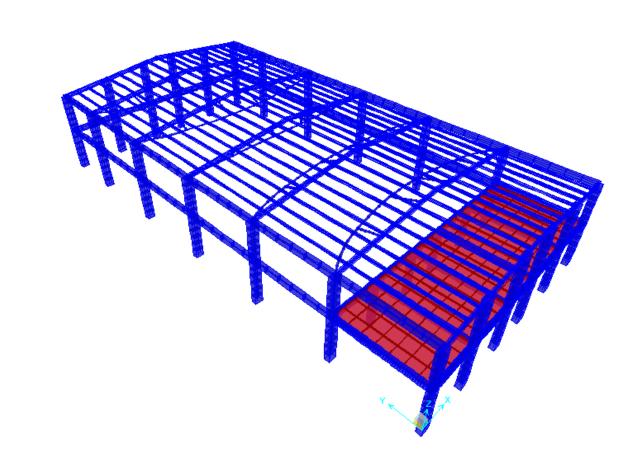
"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

K Deformed Shape (MODAL) - Mode 2; T = 0.52089; f = 1.91979

Second mode of shape Gym



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Mode 3; T = 0.52028; f = 1.92203

Third mode of shape Gym

9. Drifts

9.1 <u>The Relative Displacement of the Interfloors According to Two Directions</u>

0.001177

0.000675

The relative displacement of the inter floors according to two directions

The drift of the inter story above will be determinate in a table, considering the non-excessed the limit values for the structures with not constructive elements and non-ductile

 $dr \cdot \upsilon \leq 0.005 \cdot h$

where:

dr-is the design interring story drift as defined in 4.4.2.2(2);

v -is the reduction factor which takes into account the lower return period of the seismic action associated with the damage limitation requirement.

h-is the storey height;

File

STORY 0

The allowed design value of the inter story drift for the structure is dr=0.005x408/0.4=5.1 cm

According to the given response spectrum from the seismic report, the drift calculation are:

🚾 DISPLACEMENTS AND DRIFTS AT POINT OBJECT 41453

STORY	DISP-X	DISP-Y	DRIFT-X	DRIFT-Y
STORY 2-1	3.653175	0.848087	0.001593	0.000500
STORY 2	3.020838	0.646024	0.002509	0.000625
STORY 1	2.007739	0.392395	0.002980	0.000620
STORY 0	0.794211	0.139664	0.001947	0.000342
	CEMENTS AND	DRIFTS AT DO	UNT OBJECT	20002
🏧 DISPLA File	CEMENTS AND	DRIFTS AT PO	INT OBJECT	39983
			DINT OBJECT	39983 DRIFT-Y
File	Y DISP-X	DISP-Y		
File STORY	Y DISP-X 1 -3.234502	DISP-Y	DRIFT-X	DRIFT-Y

Displacement in Object 1

-0.275293

-0.480195

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

(EN8 -4.4.3.2) (4.31)

(EN8-4.4.3.2)

Tirana Municipality

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

🚾 DISPLACEMI File	ENTS AND D	RIFTS AT PO	INT OBJECT 4	1210
STORY	DISP-X	DISP-Y	DRIFT-X	DRIFT-Y
STORY 2-1	3.991231	-1.694647	0.002563	0.000998
STORY 2	2.951830	-1.291742	0.002983	0.001242
STORY 1	1.738739	-0.787571	0.002827	0.001248
STORY 0	0.586269	-0.278942	0.001437	0.000684

File

STORY	DISP-X	DISP-Y	DRIFT-X	DRIFT-Y
STORY 2-1	2.136245	3.146100	0.001377	0.001729
STORY 2	1.576367	2.450747	0.001600	0.002279
STORY 1	0.924679	1.526891	0.001507	0.002393
STORY 0	0.310073	0.551510	0.000760	0.001352

Displacement in Object 2

According to the table, the drift values are within the design inter story drift.

10. Description of the Component Elements of the Structure

10.1. Foundations

Consists of a reinforced concrete foundation slabs, reinforced concrete beams and reinforced concrete footings, determinates according to the geometrical shape of the structure, the geological formation where the foundation is going to be placed, the importance of the structure and the vertical load that will be transmitted in this foundation from the structure.

The design anchorage length of the bars according to Eurocode is determinate as below

 $l_{bd} = \alpha_1 \ x \ \alpha_2 \ x \ \alpha_3 \ x \ \alpha_4 \ x \ \alpha_5 \ x \ l_{b,rqd} \ge l_{b,min}$ (Eurocodi 2-8.4.1 formula 8.4)

where from thw table below: $\alpha_1=1$, $\alpha_2=1$, $\alpha_3=1$, $\alpha_4=0.7$, $\alpha_5=1$

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

		Reinforcement b	ar
Influencing factor	Type of anchorage	In tension	In compression
Shape of bars	Straight	α ₁ = 1,0	α ₁ = 1,0
	Other than straight (see Figure 8.1 (b), (c) and (d)	$\alpha_1 = 0,7 \text{ if } c_d > 3\phi$ otherwise $\alpha_1 = 1,0$ (see Figure 8.3 for values of c_d)	<i>α</i> ₁ = 1,0
Concrete cover	Straight	$\alpha_2 = 1 - 0, 15 (c_d - \phi)/\phi$ $\geq 0, 7$ $\leq 1, 0$	α ₂ = 1,0
	Other than straight (see Figure 8.1 (b), (c) and (d))	$\alpha_2 = 1 - 0.15 (c_d - 3\phi)/\phi$ ≥ 0.7 ≤ 1.0 (see Figure 8.3 for values of c_d)	a ₂ = 1,0
Confinement by transverse reinforcement not welded to main reinforcement	All types	$\alpha_3 = 1 - K\lambda$ $\geq 0,7$ $\leq 1,0$	α ₃ = 1,0
Confinement by welded transverse reinforcement*	All types, position and size as specified in Figure 8.1 (e)	$\alpha_4 = 0,7$	α ₄ = 0,7
Confinement by transverse pressure	All types	$\alpha_5 = 1 - 0.04p$ ≥ 0.7 ≤ 1.0	-
∑A _{st} cross length ∑A _{st,min} cros = 0,25 A _s area o K value p transv * See also 8.6: For lea	n I _{bd} ss-sectional area of the 5 A _s for beams and 0 for of a single anchored bar is shown in Figure 8.4 verse pressure [MPa] at r direct supports I _{bd} may	with maximum bar diameter ultimate limit state along / _{bd} be taken less than / _{b.min} provided t velded within the support. This sho	hat there is at

Table 8.2: Values of α_1 , α_2 , α_3 , α_4 and α_5 coefficients

 $l_{b,rqd} = (\phi / 4) (\sigma_{sd} / f_{bd})$

 $f_{bd}=2,\!25\;\eta_1\;\eta_2\;f_{ctd}$

ku: $\eta_1=1, \eta_2=1$

 $f_{ctd} = \alpha_{cc} \ f_{ctk,0.05} / \gamma c$

(Eurocodi 2-8.4.1 formula 8.3)

(Eurocodi 2-8.4.1 formula 8.2)

(Eurocodi 2-3.1.6 formula 3.16)

"Design of 9-Year School "Emin Duraku",

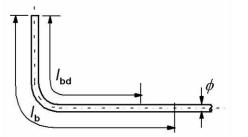
Tirana Municipality

Structural Technical Report

$y_c = 1.5$

(EC2 -2.4.2.4 Tabela 2.1N)

Table 2.1N: Partial factors for materials for ultimate limit states

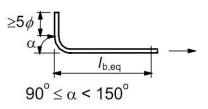

Design situations	$\gamma_{\rm C}$ for concrete	75 for reinforcing steel	$\gamma_{\rm S}$ for prestressing steel
Persistent & Transient	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

 $\alpha_{cc} = 0.8-1$

 $f_{ctm} = 0.3 \ x \ f_{ck} \wedge (2/3) = 2.6 \ MPa.$

 $(f_{ctk} 0.05=0.7 \text{ x } f_{ctm}) = 1.8 \text{ MPa.}$

 $f_{ctd} = 1.8/1.5 = 1.2$ MPa.


a) Basic tension anchorage length, *I*_b, for any shape measured along the centreline

According to the formula above and from the table 8.2

 f_{bd} = 2.25x1x1x1.2=2.7 Mpa

l_{b,rqd}=(20/4)x(435/2.7)=805 mm

 $l_{bd}{=}1x1x1x0.7x805~mm{=}563~mm>l_{b~min}{=}0.6x805{=}483~mm$

b) Equivalent anchorage length for standard bend

(Eurocode 2-8.4.1 table 8.2):

(EC2-3.1.3 Tabela 3.1)

(EC2-3.1.3 Tabela 3.1)

Programme EU for Schools "Design of 9-Year School "Emin Duraku", Tirana Municipality Structural Technical Report

for anchorages in compression: $lb,min > max\{0,6lb,rqd; 10\phi; 100 mm\}$

According to the above results and the thickness of the foundation beams satisfies all the conditions. According to the above results foundation beam thickness will be 200 cm and anchorages will 115cm. The foundation slab is designed to be placed in an elastic formation, placed in a ballast layer with 20 cm. The formation where the ballast layer is placed, is relatively well represented from gravels with low level of humidity and compressed. According to the geological report of the soil where the structure is placed, the bearing capacity of the soil is 1.8 kg/cm² according to geological study.

The design model of the foundation formation is the Winkler's model. It is taken in consideration in the calculations the static coefficients of the stiffness and specifically the degrees of freedom belonging to the vertical displacements and the rotations according to the perpendicular axis which lay on the lower level of the foundation beams as the most representatives (3 degrees of freedom). The other three degrees of freedom of the formation in the design model are accepted as blocked.

The static coefficients are calculated considering the sliding module of the formation $G(t/m^2)$ and the dimensions of the foundation in plan. G is determinates from the three inputs of the seismic-engineering report, as a derivate of the velocity of the extension of the crossing wave in the formation and the density of the soil:

 $vs=475(m/s), \rho=\gamma/g=0.21 (ts^2/m^4)].$

10.1.1. Reinforced Foundation Slab

The thickness of the slab foundation is 50 cm cm. It is placed in the quote -2.00 m from quote +/-0.00. typical reinforced it represented above.

The foundation slab is reinforced with double grill in both directions, placing additional reinforcement at the areas with highest concentration of stresses under the columns, the walls etc. The spaces among the bars for all the grills in the foundation slab is uniform, simplifying simultaneously its construction.

10.1.2. Reinforced Foundation Beams

The reinforcement for the foundation beams is done considering the main combination results, but it is checked for the seismic combination.

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

10.1.3. Reinforced Footings

The reinforcement for the footings is done considering the main combination results, but it is checked for the seismic combination.

The concrete class is C 25/30 and the steel is Sidenor (BSt-500S)

The cover layer of the foundation reinforcement beams is 4 cm

It is checked the bearing capacity and the stability of the formation to resist the loads transmitted from the structure, like the below formulas show:

 $E_d < R_d$

 $E_d = (F*\gamma_f + N)/F$

Ed=(490*2.5*9.81*1.35+0.6+33522)/490=(9733+31522)/490=41255/490=84 kPa

 $\gamma_f = 1.35$

 $R_d = X_k / \gamma_m$

 X_k – bearing capacity ($\sigma = 180$ kPa)

 $\gamma_m = 1.2$

84kPa<180/1.2=150

10.2. Reinforced Concrete Frame

It represents the main element of the structure. It is composed of bars or one dimensioned column elements, two dimensioned walls and the beams.

The vertical and horizontal structure is dimensioned considering the conditions of EN-8 for the reinforced concrete elements.

10.2.1. Reinforced Concrete Columns and Walls

The reinforced concrete columns and walls, as main elements of the structure, are designed with different dimensions, considering the balance of the stiffness according to both directions in plan to considerably avoid the addition effects from the torsion.

EC 7-Annex-A.3.1 (1)

EC 7-Annex-A.3.2 (1)

EC 7-2.4.7.3.1 (2.5)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

They are the main elements of the vertical bearing capacity and the horizontal bearing capacity during the seismic reaction.

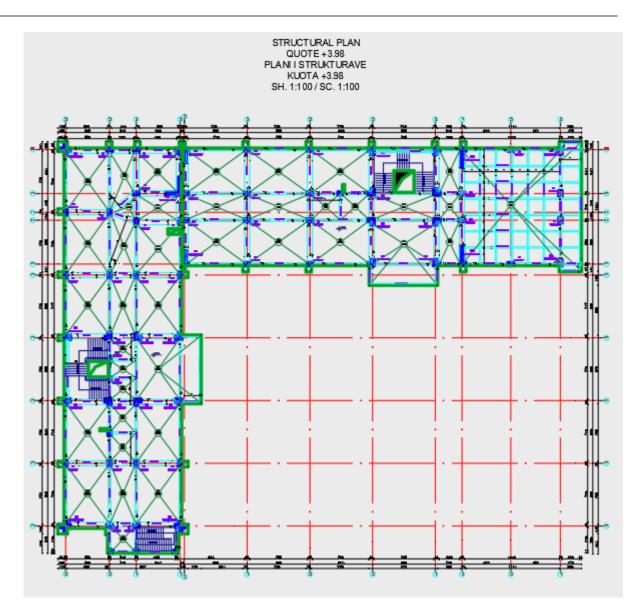
In the determination of the dimensions of these elements, it is considered all the Eurocode criteria and respectively EN 8.5.4.1.2. Their cross-sections are rectangular. The step of the columns is determinates according to the architecture of the structure and are 8.00 m; 8.14 m; 7.86 m; 3.40 m and 6.30 m according to the X direction and 5.45m; 3.40m; 5.6 m according to the Y direction (Building_1); 5.6 m; and 3.40 m according to the X direction and 3.50m; 8.11 m; 7.89 m; 7.86 m; 8.14 m; 8.00 m; 6.85m; 3.70m; 5.45m according to the Y direction (Building_2);. The class of concrete is C30/37 and the steel is Sidenor (BSt-500S).

After the analyzing of the structure from the software, the verification of the columns differs from the verification of the beams concerning the reinforcement placement, in this case the reinforcement is realized symmetric(remind that before the modeling and during the modeling of the structure, the division between the beam and column elements is already done from the user). The placement of the walls is done mainly in the zones where the architectural design is not harmed, also in the other places of the structure where it is decided to have a better accordance between the center of the gravity or the center of the plane figure (planes) with the center of inertia. The thickness of the vertical walls is 35 cm. The columns are rectangular with dimension 40x70 cm and "L" with dimensions 80X40cm. The reinforcement of the columns and the walls is done according to the results of the most unfavorable combinations respecting the Eurocode's main principles.

10.2.2. Reinforced Concrete Beams

Consist the horizontal reinforced concrete frame, which mainly support the vertical load of the slabs above them, transmit the horizontal seismic load to the vertical elements and supporting a considerable part of it. The beams are considered deep, with the dimensions as described: 30X60 cm; 30X50 cm; 30X40 and 65X40 cm. The class of the concrete is C30/37 and the steel Sidenor (BSt-500 S)

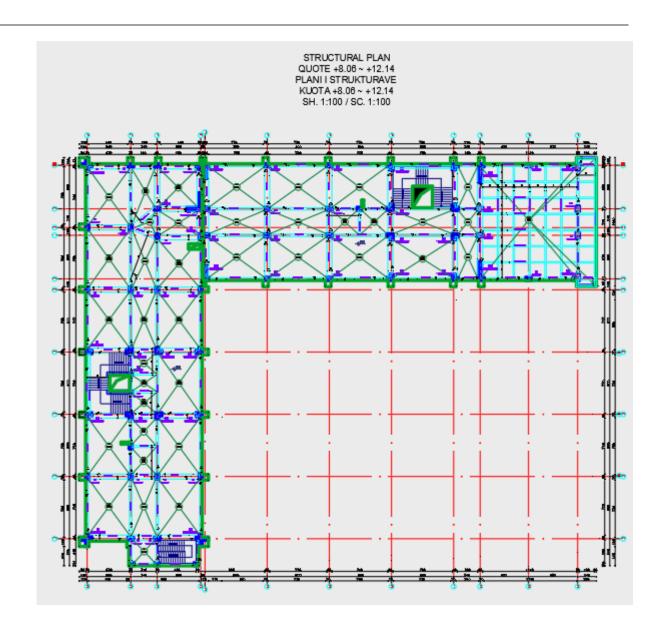
The beam reinforcement is done according to the results taken from the most unfavorable combination respecting the main principles of Eurocode, respecting also the limitations for the minimal and maximal reinforcement percentages, given in the (EN 8.5.4.3.2.1)


10.2.3. <u>Slabs</u>

The slabs of the structure, according to the Eurocodes, for the structure of this category, are monoliths. Their thickness are determinates according to the axis and the loads are 25 cm and 20 cm. The class of the concrete is C 30/37 and the steel is Sidenor (BSt - 500S).

"Design of 9-Year School "Emin Duraku",

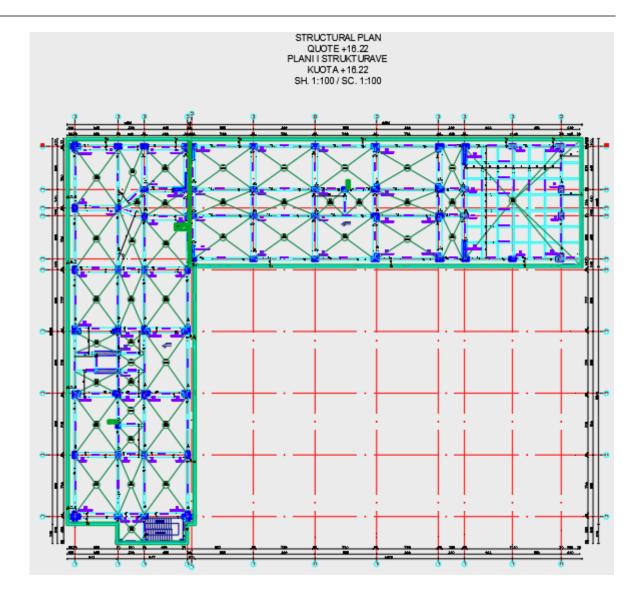
Tirana Municipality



The structural plan at the quote +3.98

"Design of 9-Year School "Emin Duraku",

Tirana Municipality


The structural plan at the quote +8.06; +12.14

"Design of 9-Year School "Emin Duraku",

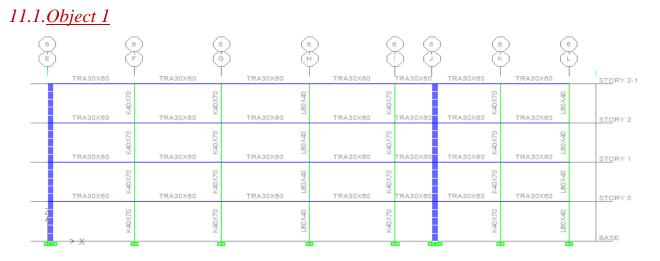
Tirana Municipality

Structural Technical Report

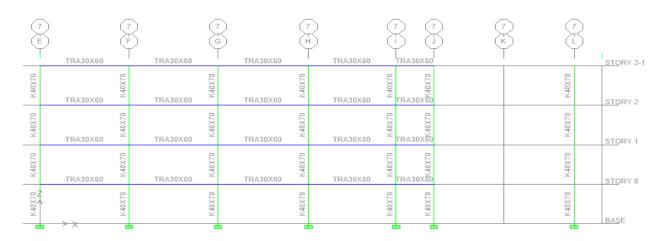
The structural plan at the quote +16.22

10.2.4. <u>Reinforced Concrete Staircases</u>

The design of the reinforced concrete staircases is done by analogy with the slabs. They are designed to be monoliths with thickness according to the drawings in the project.


"Design of 9-Year School "Emin Duraku",

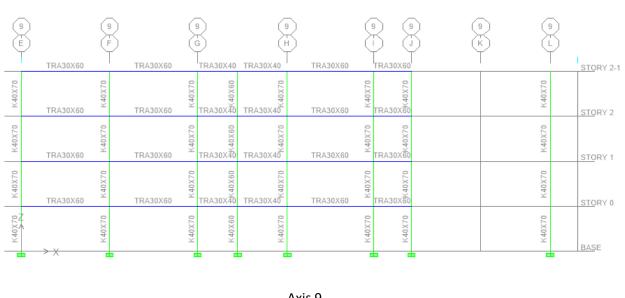
Tirana Municipality

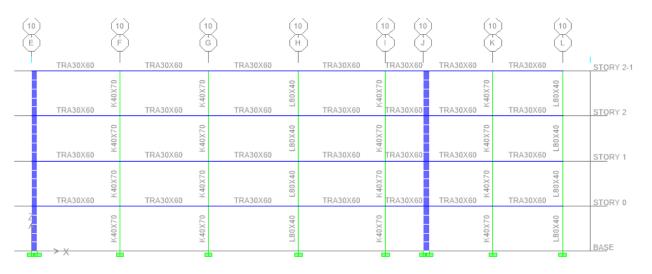

Structural Technical Report

The class of concrete is C 30/37 and the steel is Sidenor (BSt-500 S)

11. Schemes of Dimensioning of Representative Elements of the Structure

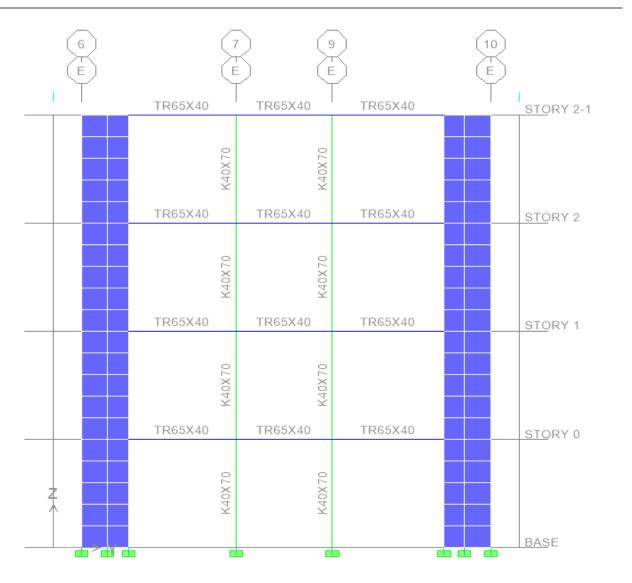
Axis 6





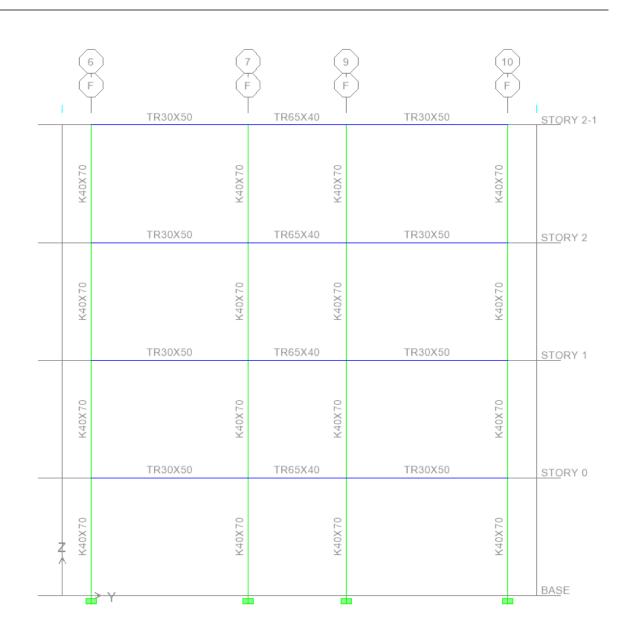
"Design of 9-Year School "Emin Duraku",

Tirana Municipality



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

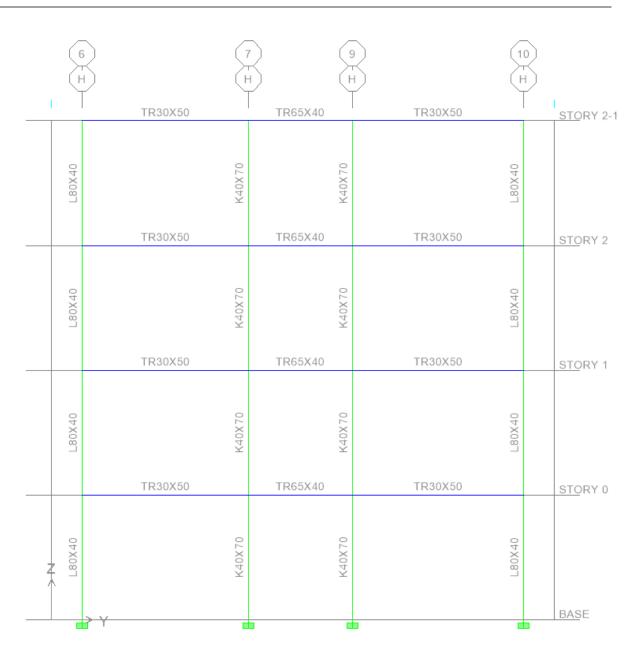


Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

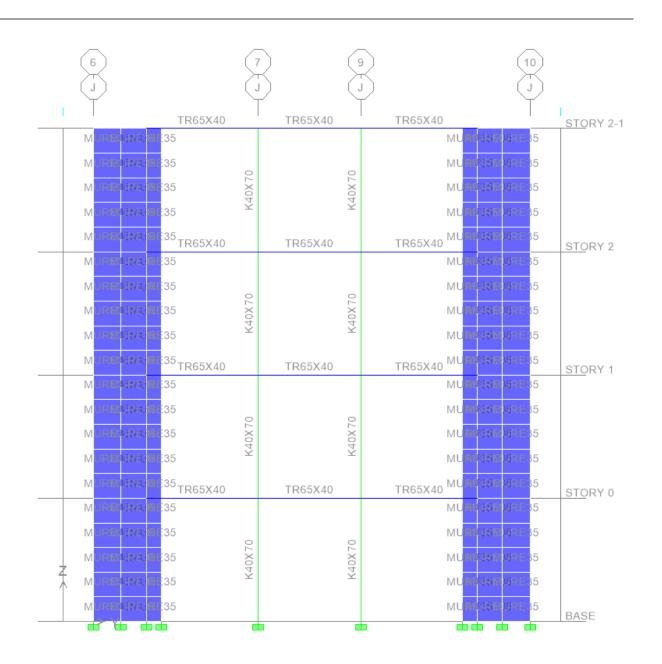

Axis F

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

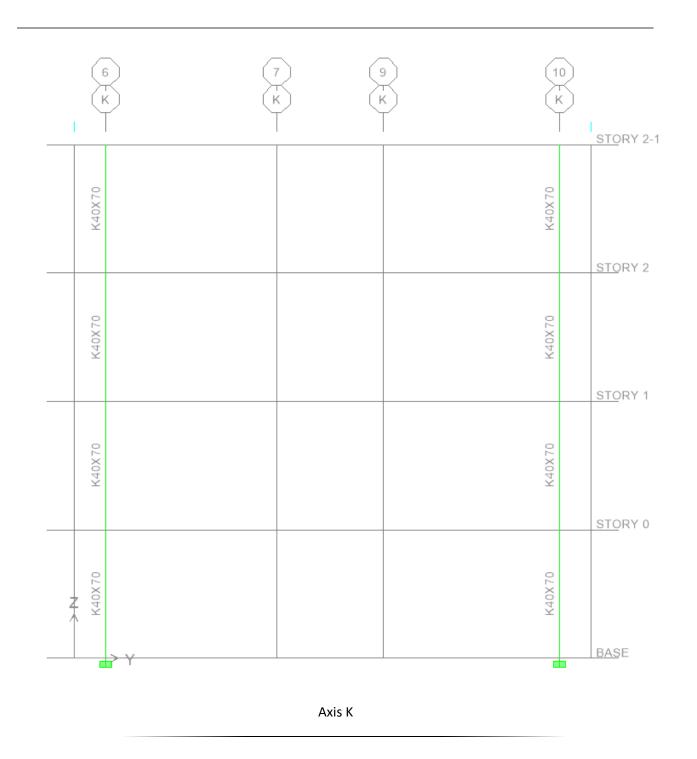


Axis H

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality



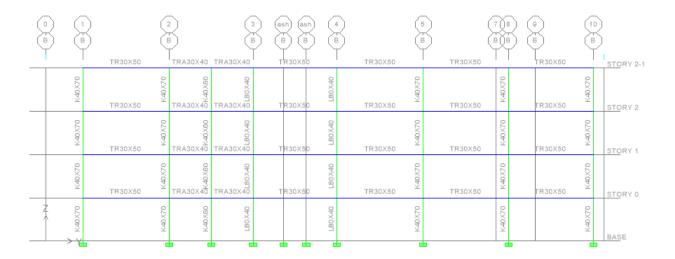
Axis J

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

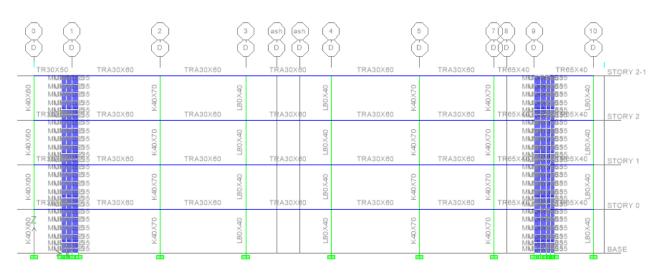
"Design of 9-Year School "Emin Duraku",


Tirana Municipality

Structural Technical Report

1.2.	<u>Objeci</u>	<u>Z</u>														
	$\langle \times \rangle$	TRA30X60	2 A	TRA30X60	3 A) (as) (A) TF	$\langle ightarrow$	5 4	5	30X60	5 A	$\langle \cdot \cdot \cdot \rangle$		9 A TRA30X60	10 A STORY 2-1	
	MMI HASS MMI HASS MMI HASS MMI HASS MMI HASS	TRA30X60	K40X70	TRA30X60	L80X40	TR	(A30X)	S L80X40	TRA	30X60	K40X70	TRA30X60	K40X70	TRA30X60	Million 2005 Million 2005 Milli	
	MMI HESS MMI HESS MMI HESS MMI HESS MMI HESS	TRA30X60	K40X70	TRA30X60	L80X40	TR	A30X6	б L80X40	TRA	30X60	K40X70	TRA30X60	K40X70	TRA30X60	MM 235 MM	
	MMI HASS MMI HASS MMI HASS MMI HASS MMI HASS	TRA30X60	K40X70	TRA30X60	L80X40	TR	A30X6	č L80X40	TRA	30X60	K40X70	TRA30X60	K40X70	TRA30X60	MMU 2005 MMU 2005 MMU 2005 MMU 2005 MMU 2005 MMU 2005 Software 100 MMU 2005 Software 100 Software 100 Softwar	
2	MMI HESS MMI HESS MMI HESS MMI HESS MMI HESS MMI HESS		K40X70		L80X40			L80X40			K40X70		K40X70		MM 2005 MM 200	
	Colina 1														eta la	

11.2. <u>Object 2</u>



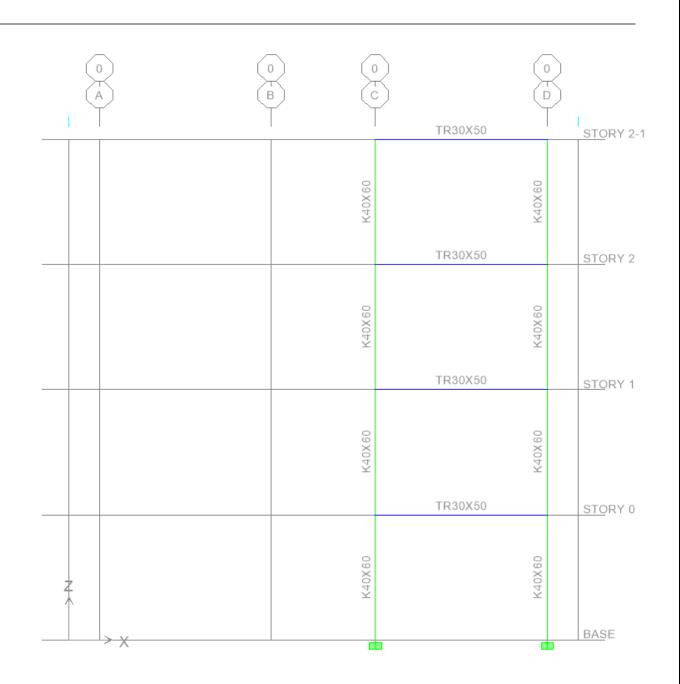
"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

E	1 C TRA30X60	2 C TRA30X60	3 C TRA30X60	ash C C TRA30X60	5 C TRA30X80	7 B C C C TR65X4	8 C TR65X40 STORY 2-1
K40X60	0/2004 TRA30X60	02×04×1 TRA30X60	07×087 TRA30×60	07×08 TRA30×#0	02X043 TRA30X60	02X 04 7 7 7 7 7 8 7 7 8 7 7 8 5 7 4 7 7 8 5 7 4 7 7 8 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7	40 X 70
K40X60	0/X 00 VX 00 VTRA30X60	02X0 7 3 TRA30X60	06X 081 TRA30X60	06×081 TRA30×80	02X07 TRA30X60	02 20 94 TRA30X60 TR65X4	0 0 0 0 0 0 0 0 0 0 0 0 0 0
K40X60	0/X 00 1X 00 TRA30X80	02X0 7 TRA30X60	06X 087 TRA30X60	062081 TRA30260	02X079 TRA30X60	7 TRA30X60 TRA30X60	0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K40X60	K40X70	K40.X7.0	LB0X40	LB0X40	K40X70	K40.X70	BASE BASE

Axis C

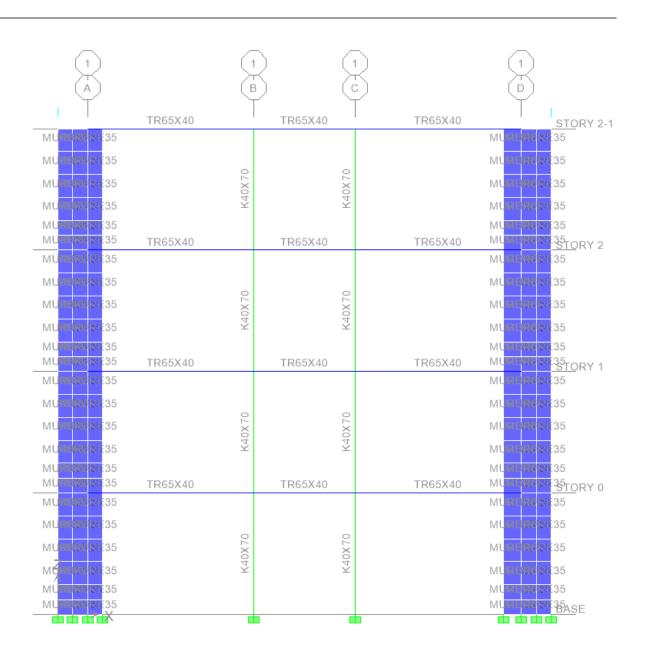

Axis D

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

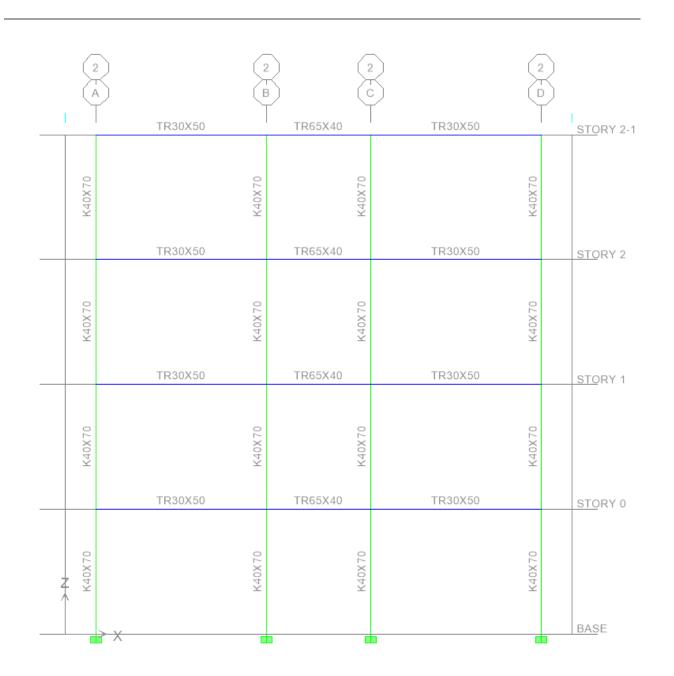

Axis 0

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

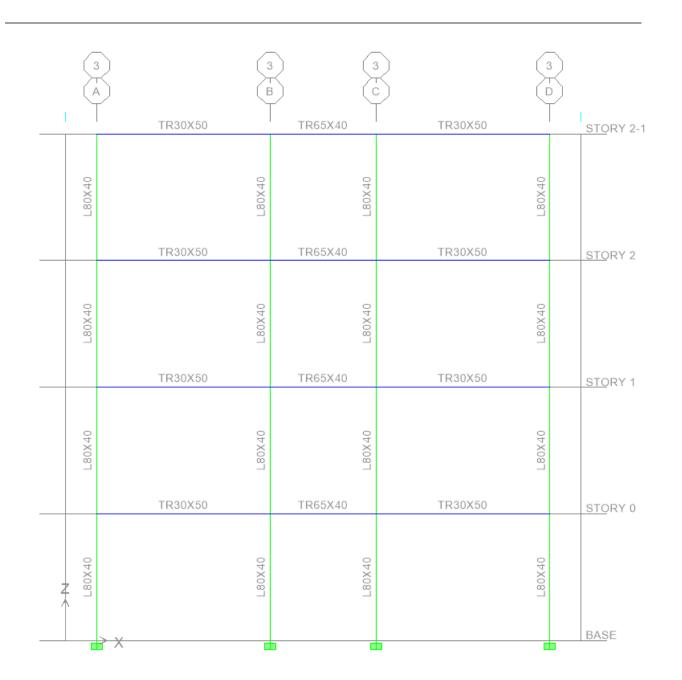


Axis 1

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

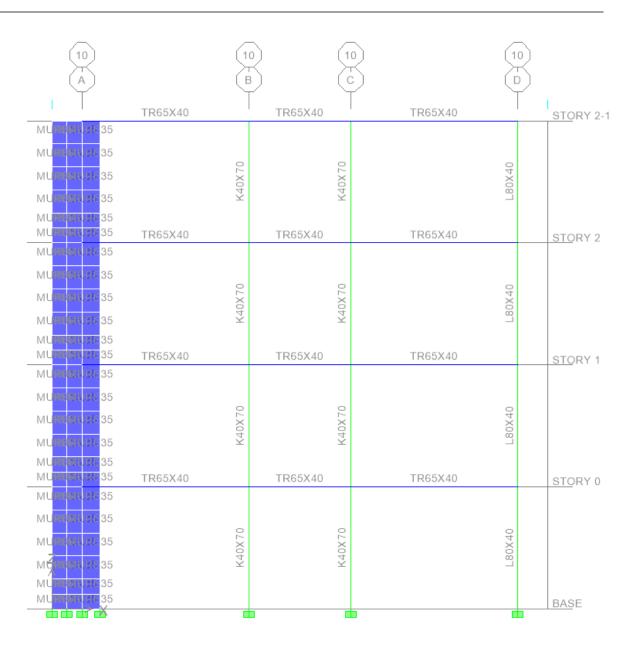
Tirana Municipality



Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality



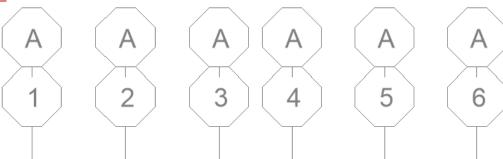
Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Axis 10

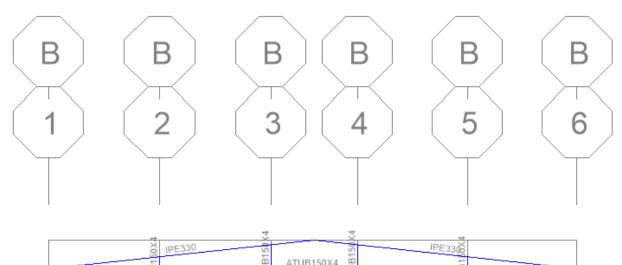


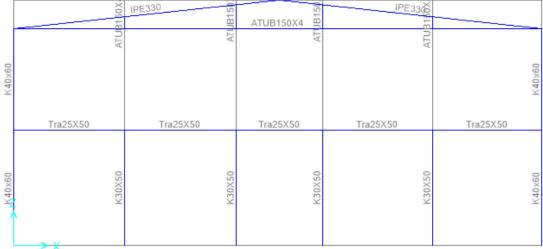
"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

		IPE330		IPE330	
K40×60	K40x60	K40x60	K40x60	K40×60	K40×60
	Tra25X50	Tra25X50	Tra25X50	Tra25X50	Tra25X50
K40×60	K 40×60	K40x60	K40x60	K40x60	K 40×60

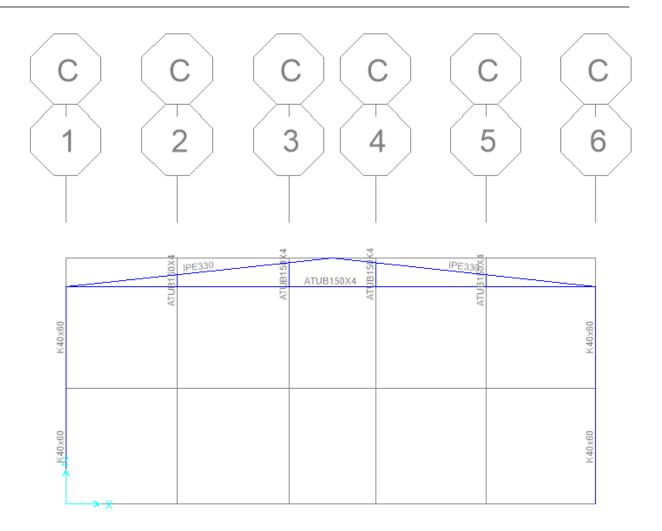

Axis A and G



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

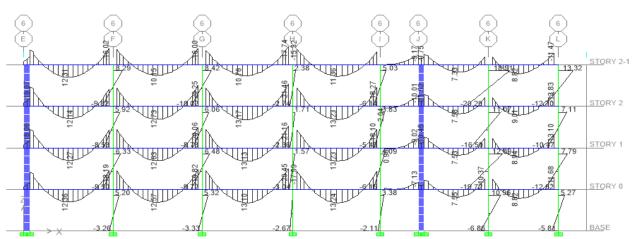

Axis B

"Design of 9-Year School "Emin Duraku",

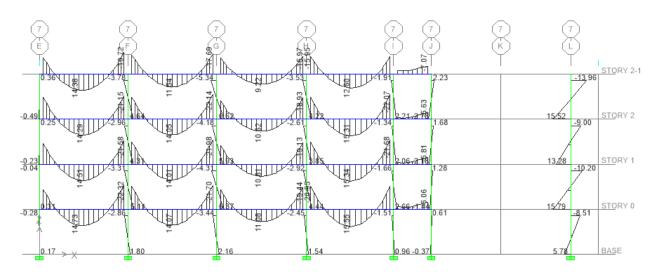
Tirana Municipality

Structural Technical Report

Axis C, D, E and F


"Design of 9-Year School "Emin Duraku",

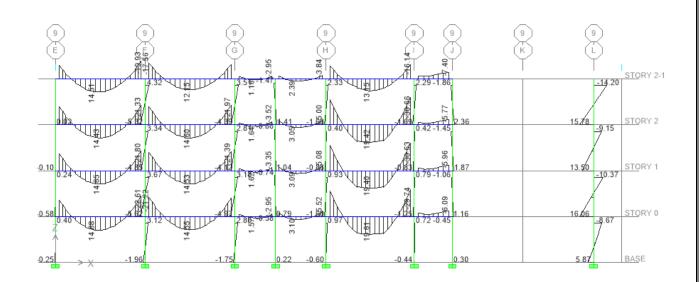
Tirana Municipality


Structural Technical Report

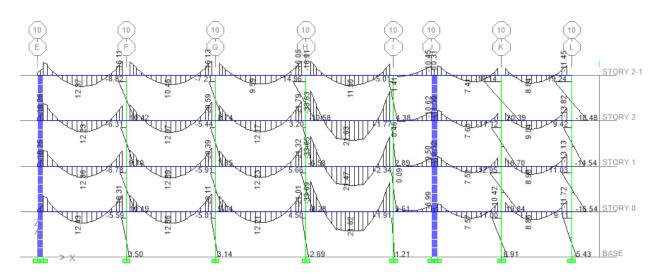
12. Schemes of Moments in the Representative Elements of the Structure

12.1. <u>Object 1</u>

Moments in Axis 6 (DCON2)


Moments in Axis 7 (DCON2)

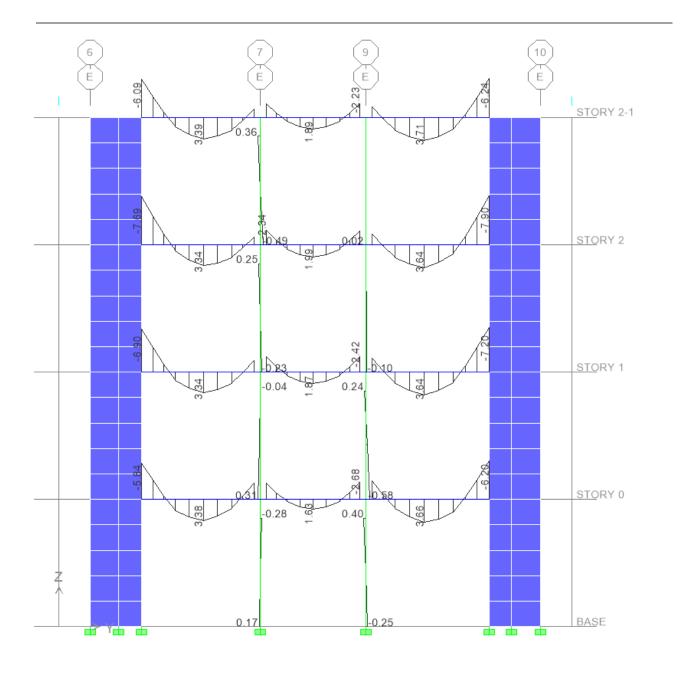
"Design of 9-Year School "Emin Duraku",


Tirana Municipality

Structural Technical Report

Moments in Axis 9 (DCON2)

Moments in Axis 10 (DCON2)

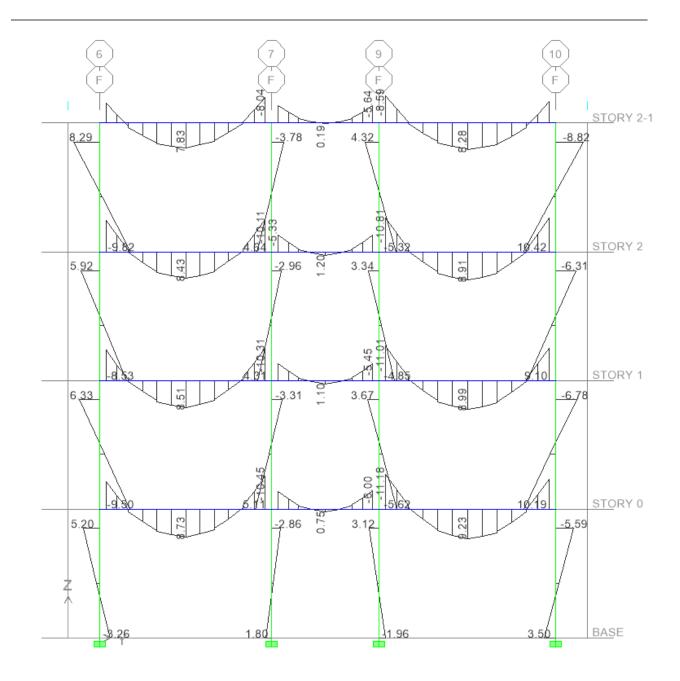

HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIQ N.6886/1 SUPERVIZION-KOLAUDIME LIQ. MK. 3289

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

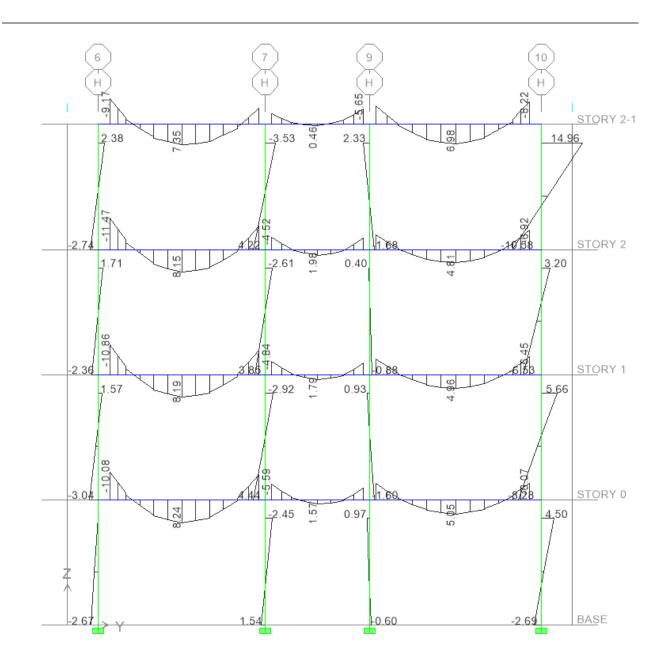
Structural Technical Report


Moments in Axis E (DCON2)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

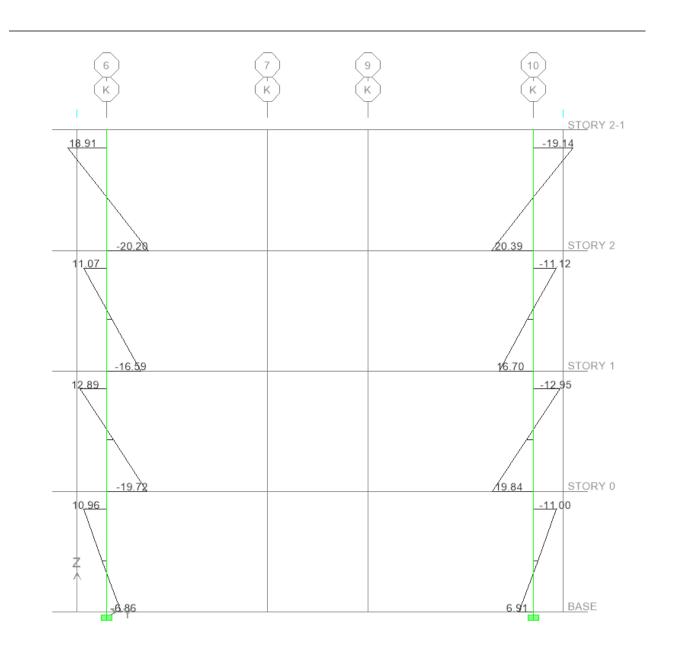

Moments in Axis F (DCON2)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Moments in Axis H (DCON2)

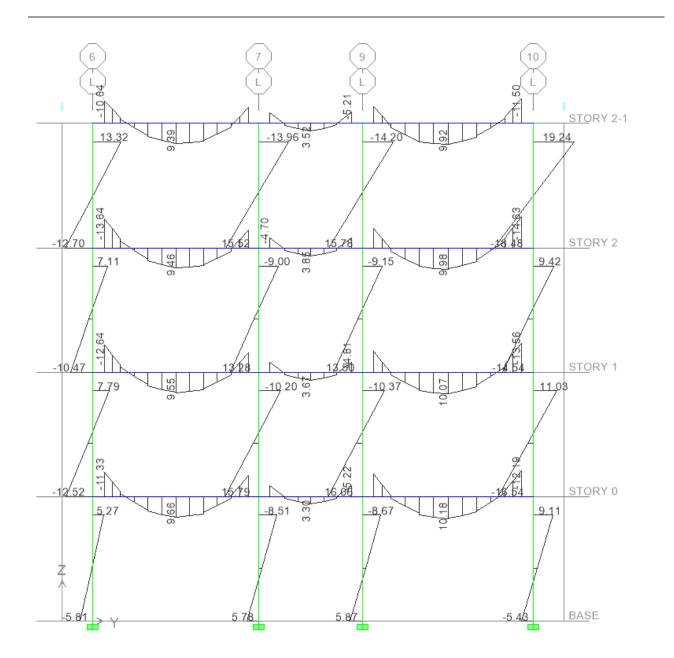

HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIQ N.6886/1 SUPERVIZION-KOLAUDIME LIQ. MK. 3289

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

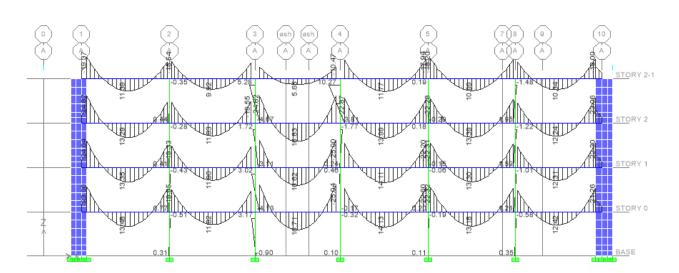

Moments in Axis K (DCON2)

"Design of 9-Year School "Emin Duraku",

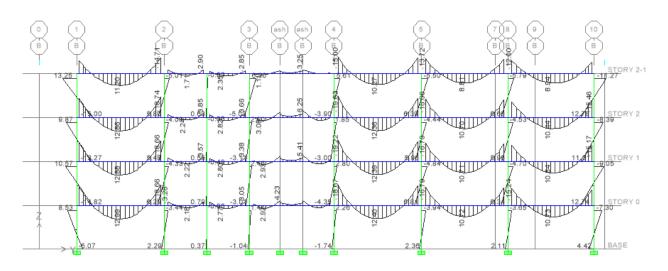
Tirana Municipality

Structural Technical Report

Moments in Axis L (DCON2)



"Design of 9-Year School "Emin Duraku",

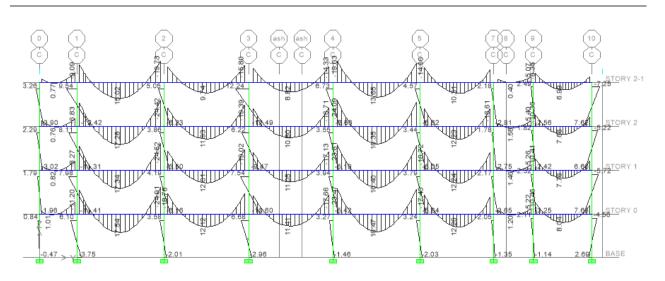

Tirana Municipality

Structural Technical Report

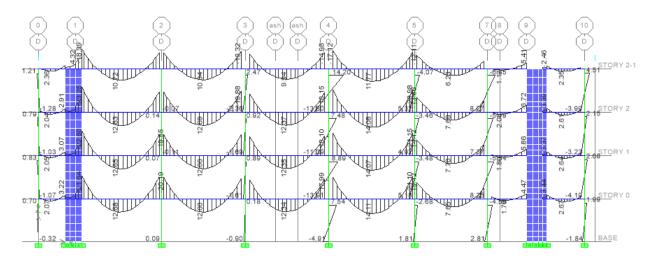
12.2. <u>Object 2</u>

Moments in Axis A (DCON2)

Moments in Axis B (DCON2)


HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIQ N.6886/1 SUPERVIZION-KOLAUDIME LIQ. MK. 3289

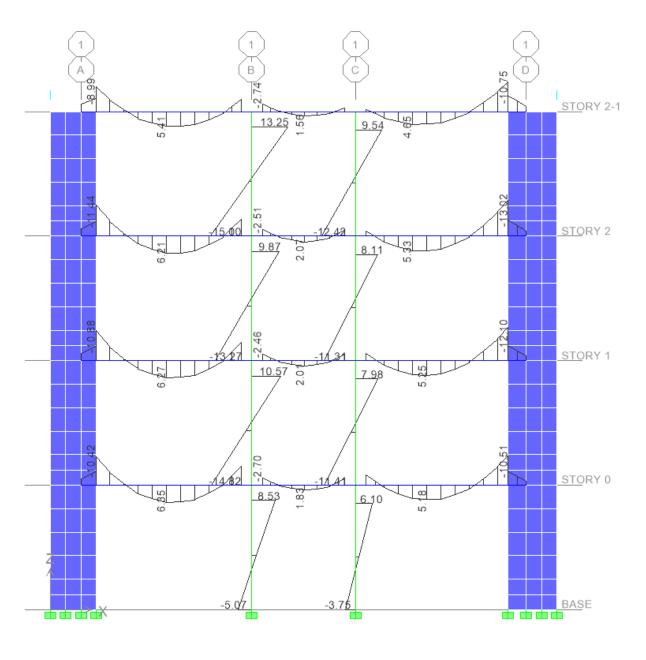
Programme EU for Schools


"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

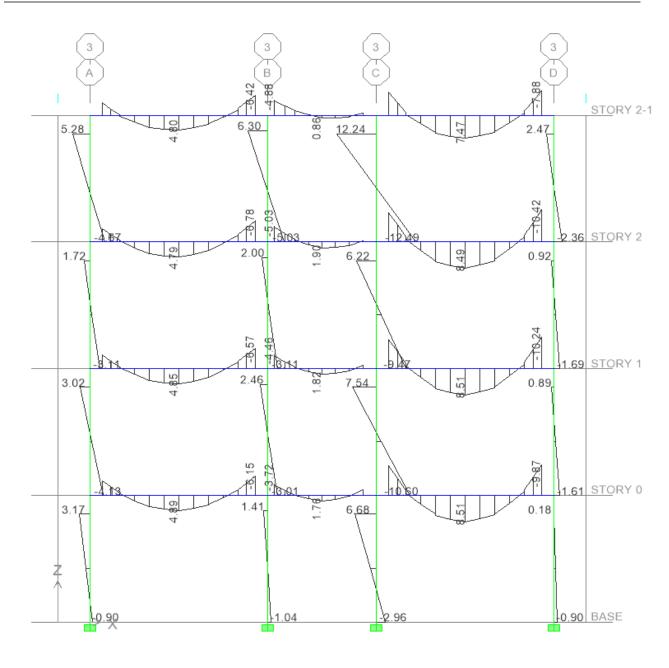
Moments in Axis C (DCON2)


Moments in Axis D (DCON2)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

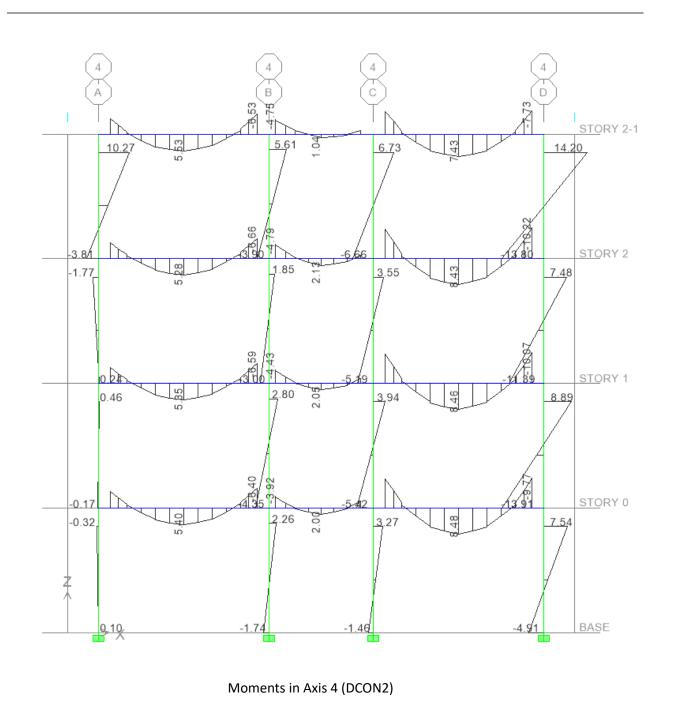

Moments in Axis 1 (DCON2)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Moments in Axis 3 (DCON2)

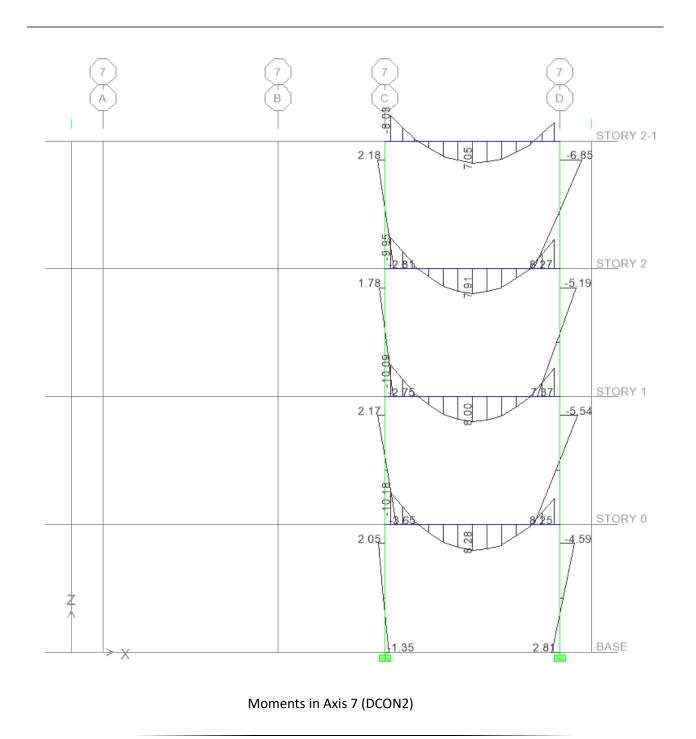

HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

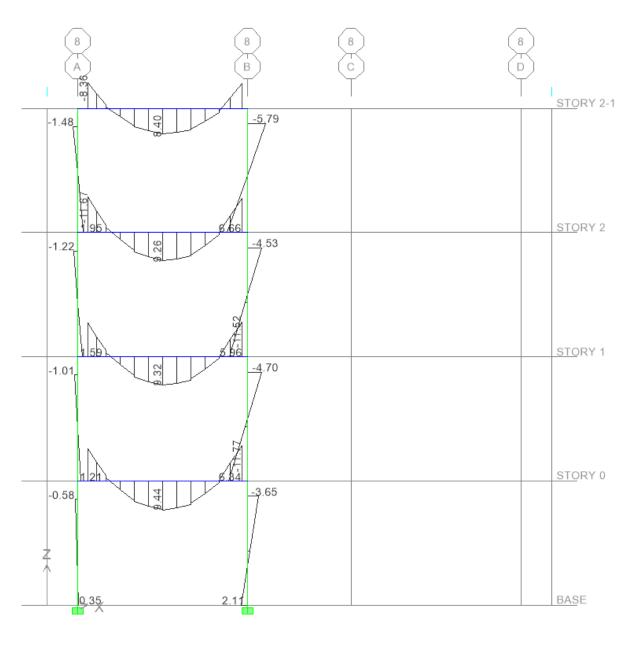
Structural Technical Report



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

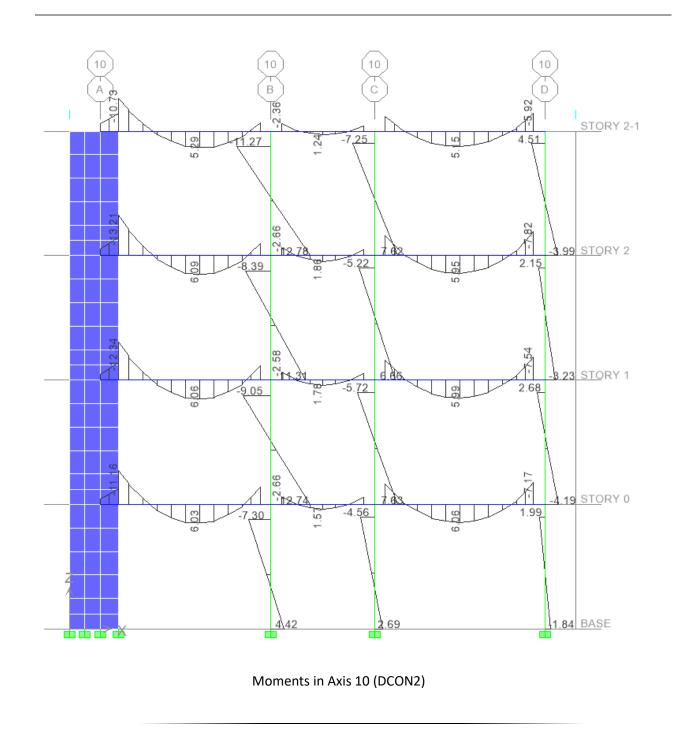


"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Moments in Axis 8 (DCON2)

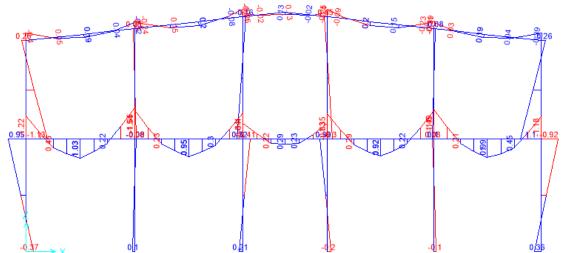

HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIQ N.6886/1 SUPERVIZION-KOLAUDIME LIQ. MK. 3289

Programme EU for Schools

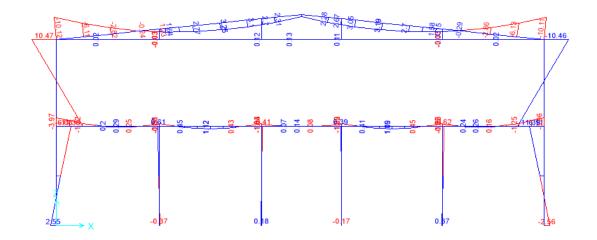
"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report



"Design of 9-Year School "Emin Duraku",

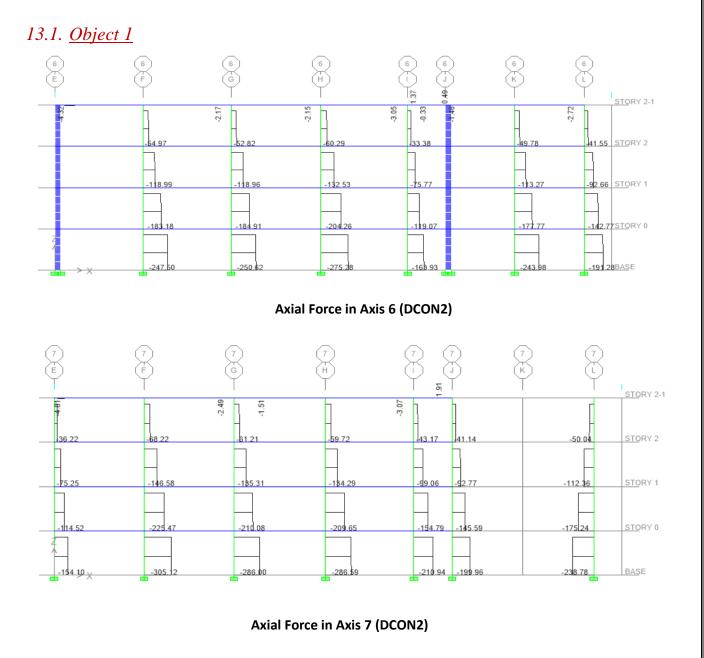

Tirana Municipality

Structural Technical Report

12.3. <u>Gym</u>

Moments in Axis A (DCON2)

Moments in Axis B (DCON2)

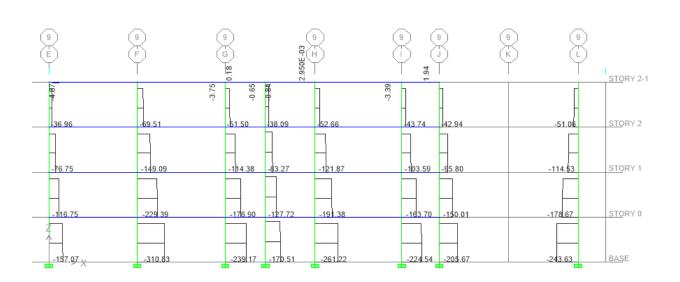


"Design of 9-Year School "Emin Duraku",

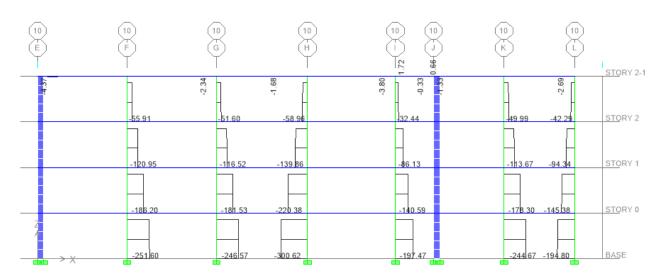
Tirana Municipality

Structural Technical Report

13. <u>Schemes of Axial Forces in the Representative Elements of the Structure</u>


HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

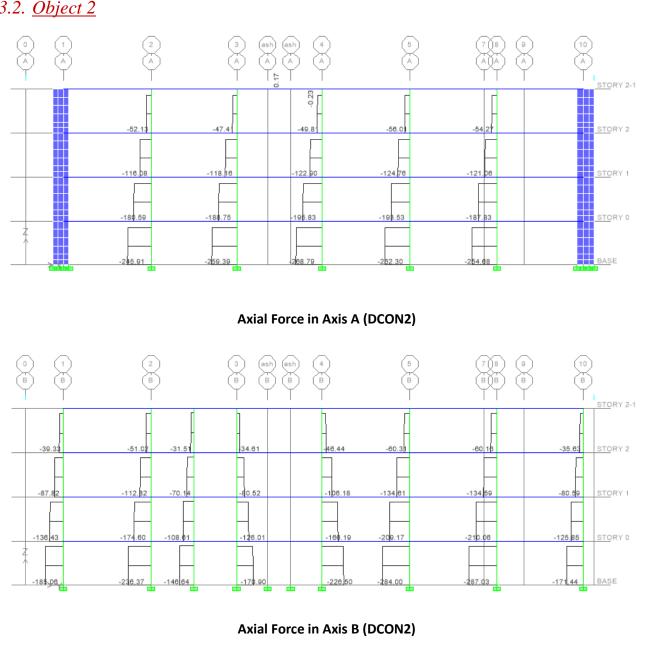
Programme EU for Schools


"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Axial Force in Axis 9 (DCON2)

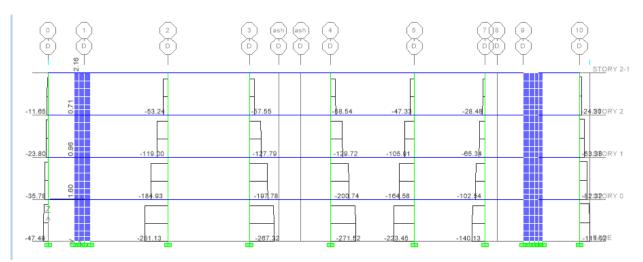

Axial Force in Axis 10 (DCON2)

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

13.2. Object 2

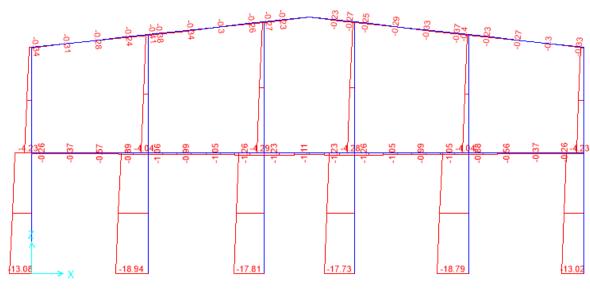

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

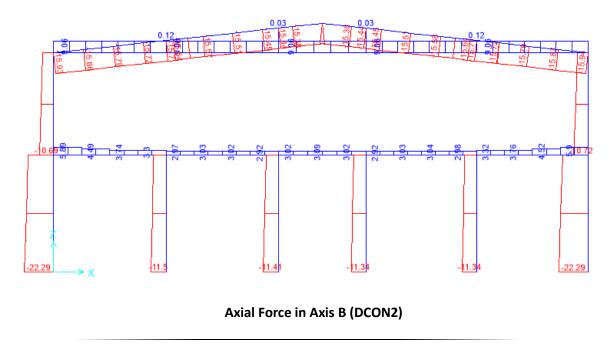
Structural Technical Report

Axial Force in Axis C (DCON2)

Axial Force in Axis D (dCON2)



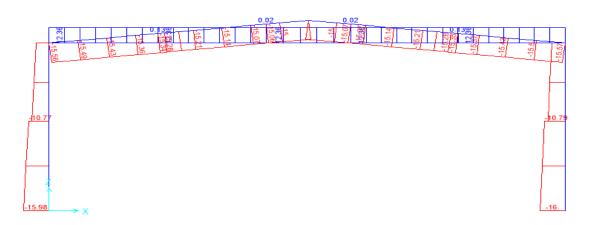
"Design of 9-Year School "Emin Duraku",


Tirana Municipality

Structural Technical Report

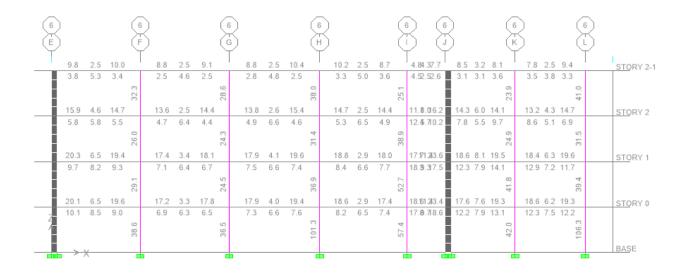
13.3. <u>Gym</u>

Axial Force in Axis A (DCON2)



"Design of 9-Year School "Emin Duraku",

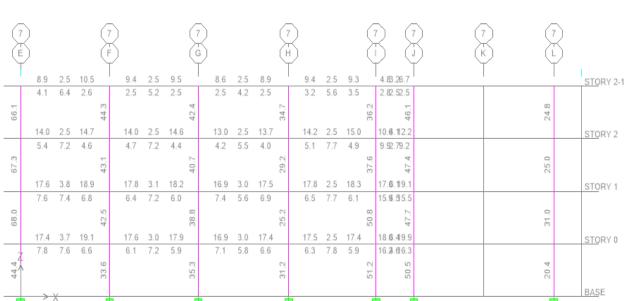
Tirana Municipality

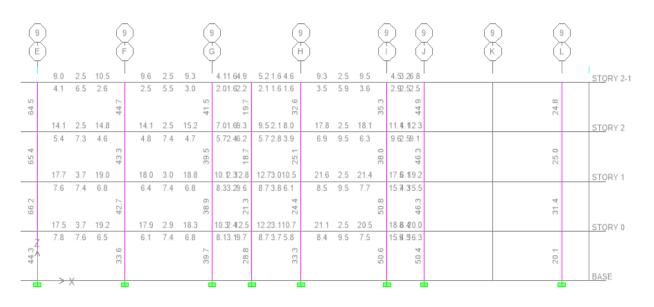

Structural Technical Report

Axial Force in Axis C (DCON2)

14. Schemes of the Reinforcement Results from the Most Unfavorable Combination

14.1. <u>Object 1</u>

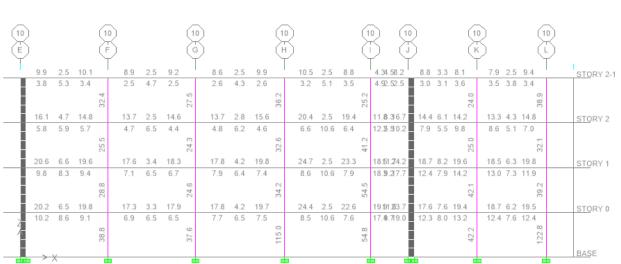



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

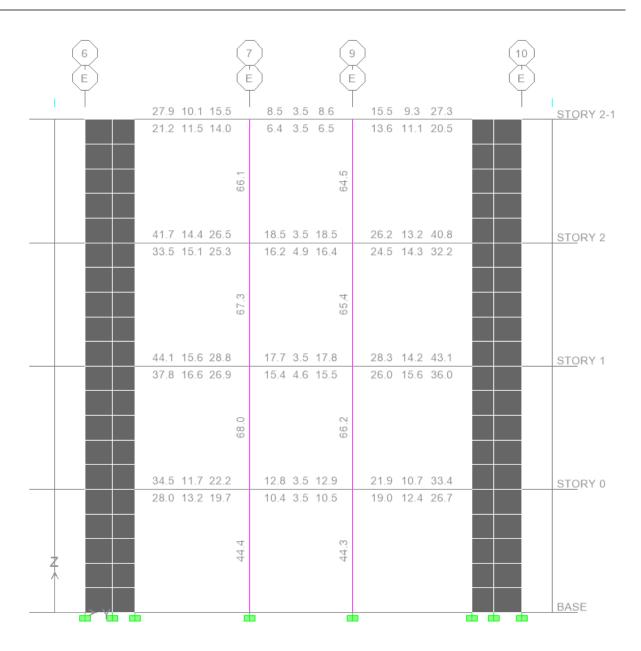
Reinforcement in Axis 7



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

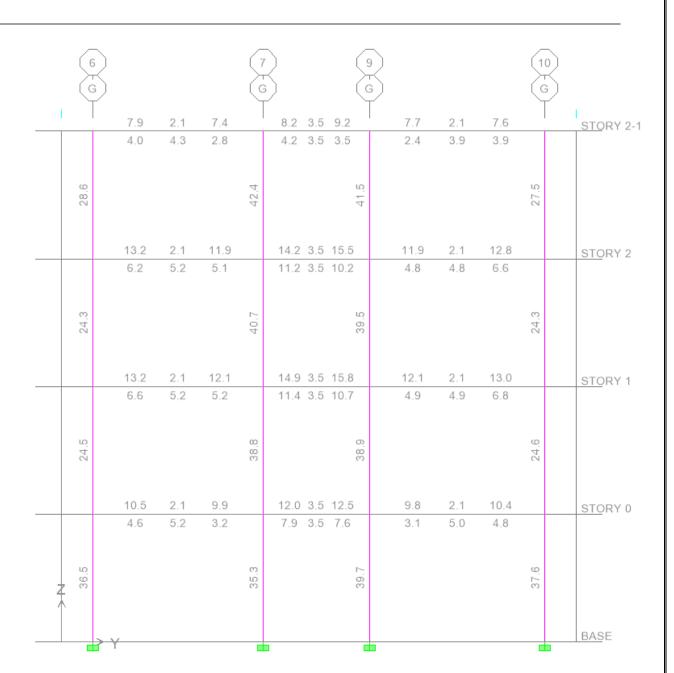
Structural Technical Report


Reinforcement in Axis 9

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report



"Design of 9-Year School "Emin Duraku",

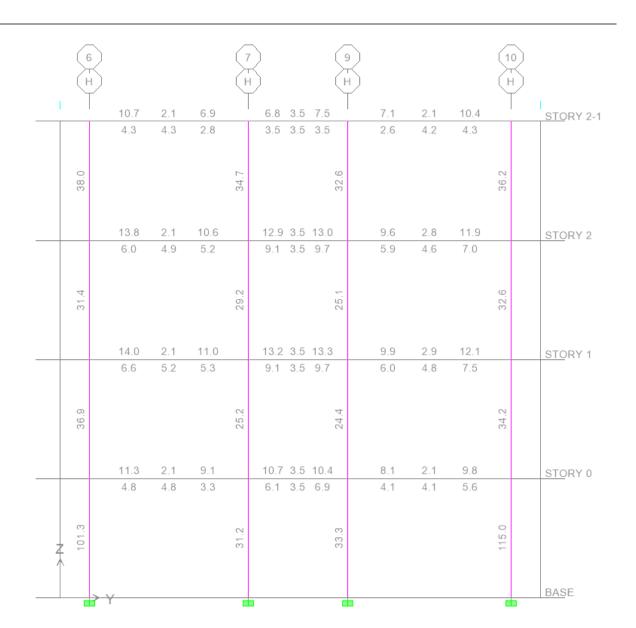
Tirana Municipality

Structural Technical Report

IT CONSTRUCTION

PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

NUIS L81818018A


Reinforcement in Axis G

101

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

IT CONSTRUCTION

NUIS L81818018A PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

Reinforcement in Axis H

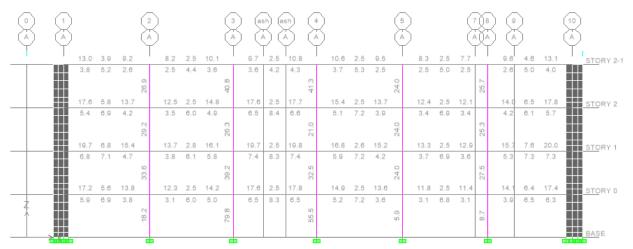
102

"Design of 9-Year School "Emin Duraku",

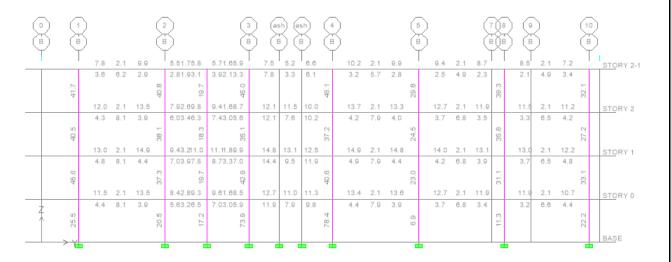
Tirana Municipality

Structural Technical Report

		2					3						(10) L	
			10.9	2.5	8.9		7.3	2.5	7.4	9.1	2.5	11.1		<u>STORY 2-1</u>
			4.8	4.6	4.4			2.5		4.2	4.7	4.7		
	41.0					24.8			24.8				38.9	
			15.3	2.6	13.3		12.4	2.5	12.4	13.4	2.5	15.4		STORY 2
			7.7	5.2	8.7		10.0	3.4	10.0	8.5	5.2	7.4		
	31.5					25.0			25.0				32.1	
			16.6	3.0	14.8				14.0	14.9	2.8	16.6		STORY 1
			9.5	5.8	9.8		11.3	3.7	11.3	9.5	5.8	9.1		
	39.4					31.0			6 4				39.2	
			13.7	2.5	12.6				11.7	12.7	2.5	13.8		STORY 0
			7.6	5.2	7.3		8.9	3.0	8.9	7.0	5.2	7.3	~	
2	106.3					20.4			20.1				122.8	
		<mark>} ∖</mark>	/											BASE



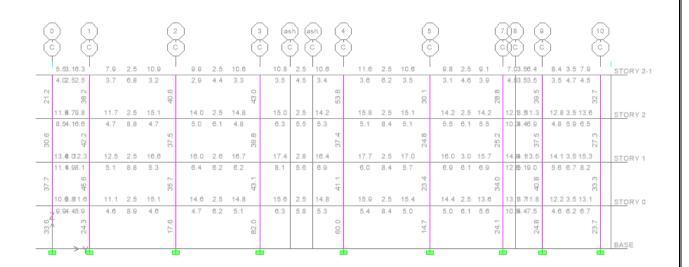
"Design of 9-Year School "Emin Duraku",


Tirana Municipality

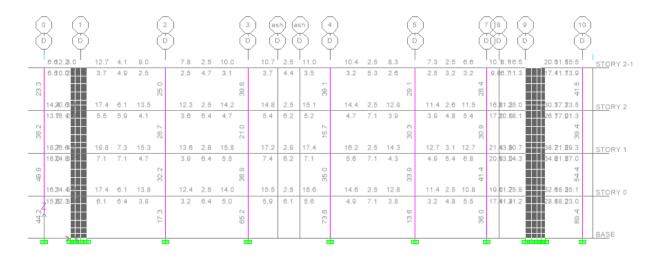
Structural Technical Report

14.2. <u>Object 2</u>

Reinforcement in Axis A


HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

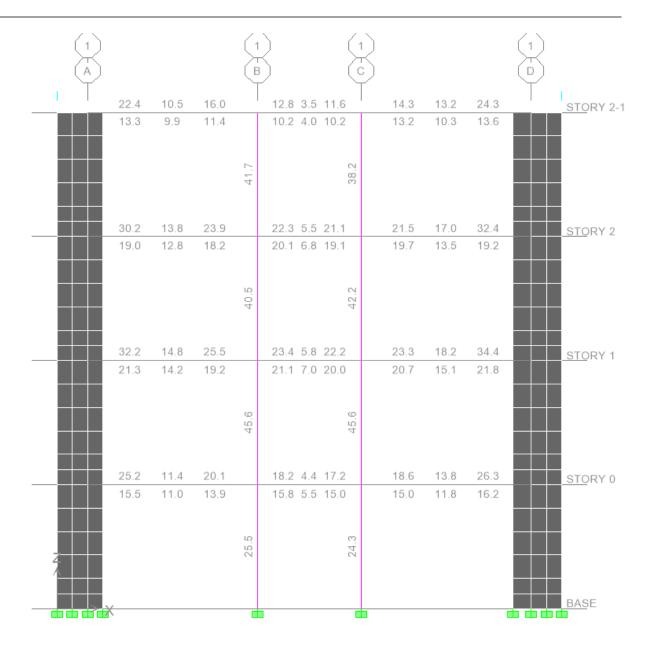
Programme EU for Schools


"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

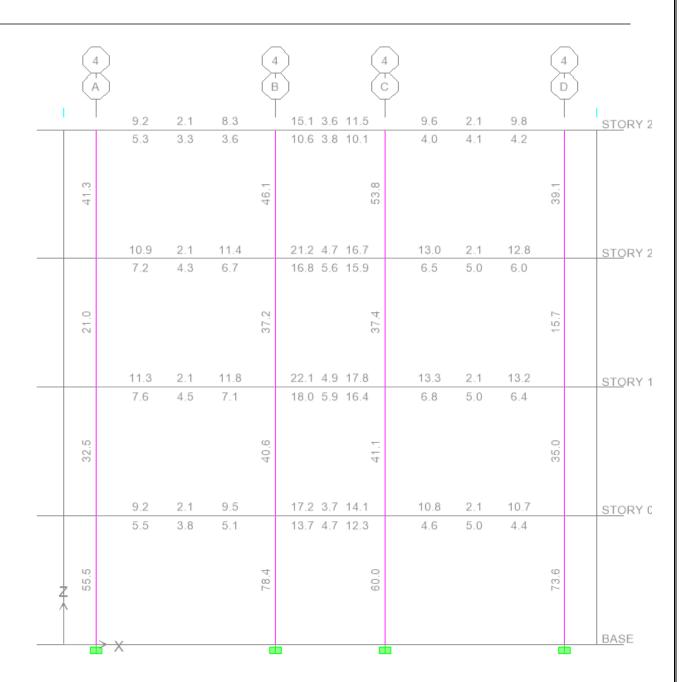
Reinforcement in Axis C


HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality


Structural Technical Report

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

IT CONSTRUCTION

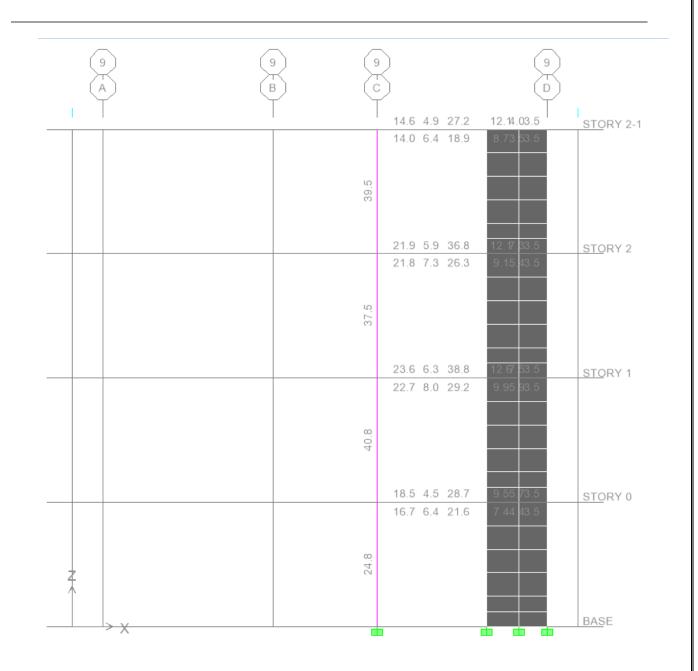
NUIS L81818018A PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

	E		7 B					7 D	
	 	1			9.4	3.5	8.9		<u>STO</u> RY 2-1
					3.5	5.4	5.2		
				28.8				26.4	
					14.0	3.5	14.0		STORY 2
					5.9	6.1	6.4		
				25.2				30,9	
					14.3	3.5	14.3		STORY 1
					6.1	6.4	6.9		
				34.0				41,4	
					11.9		11.6		STORY 0
					3.9	6.1	5.7		
2				24.1				36.0	
		_{> X}						_	BASE


HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

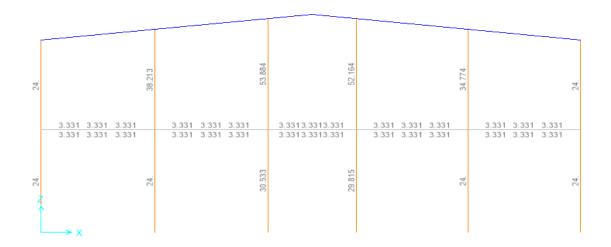
Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

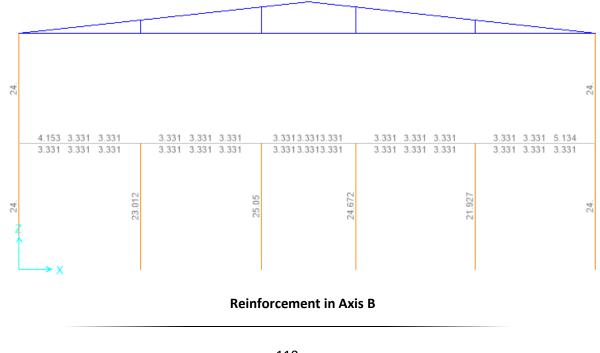
Tirana Municipality

Structural Technical Report

Reinforcement in Axis 9



"Design of 9-Year School "Emin Duraku",


Tirana Municipality

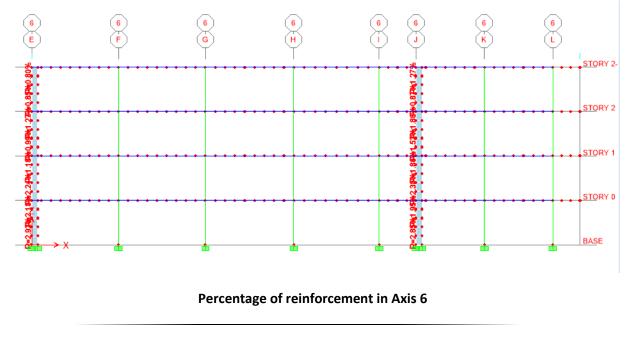
Structural Technical Report

14.3. <u>Gym</u>

Reinforcement in Axis A

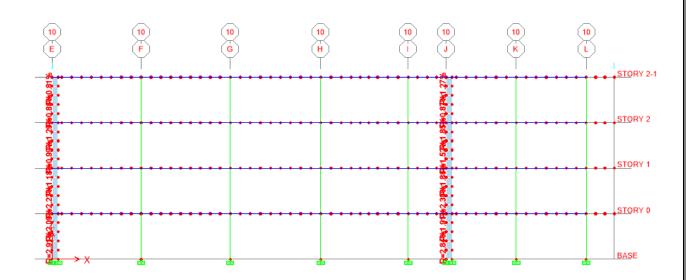
"Design of 9-Year School "Emin Duraku",

Tirana Municipality

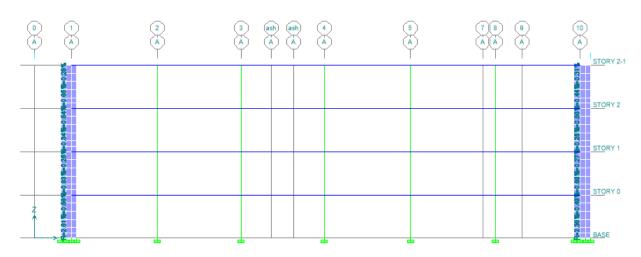

Structural Technical Report

Reinforcement in Axis C

15. Percentage of Reinforcement in the R/C Walls



"Design of 9-Year School "Emin Duraku",

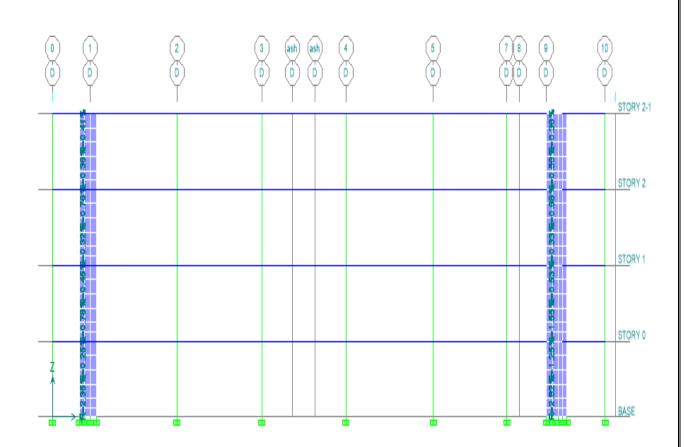

Tirana Municipality

Structural Technical Report

Percentage of reinforcement in Axis 10

15.2. <u>Object 2</u>

Percentage of reinforcement in Axis A

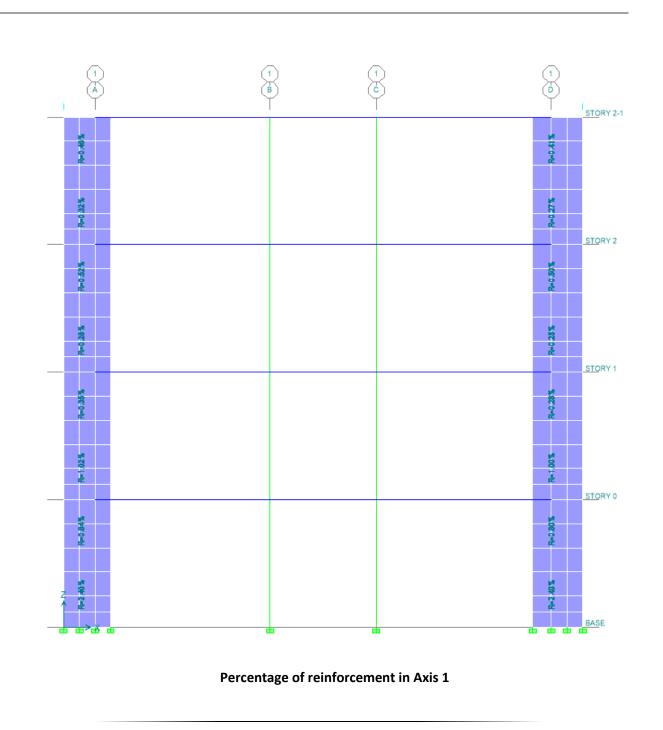

HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIQ N.6886/1 SUPERVIZION-KOLAUDIME LIQ. MK. 3289

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

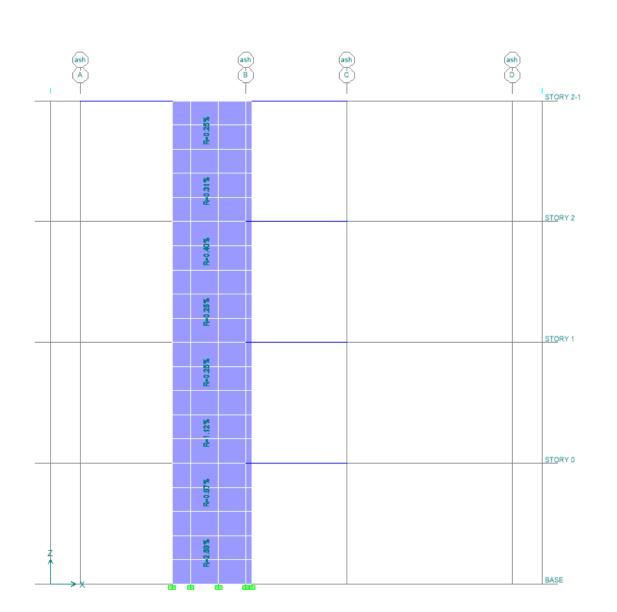
Structural Technical Report


Percentage of reinforcement in Axis D

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

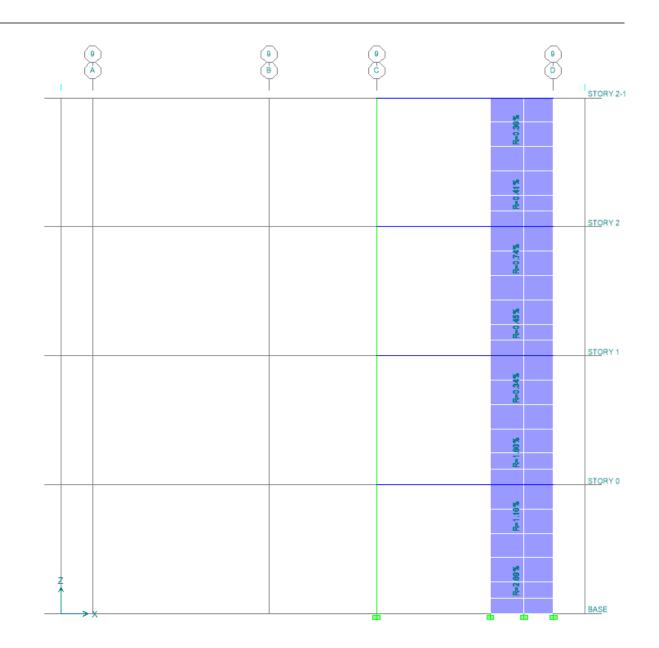
Structural Technical Report



"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

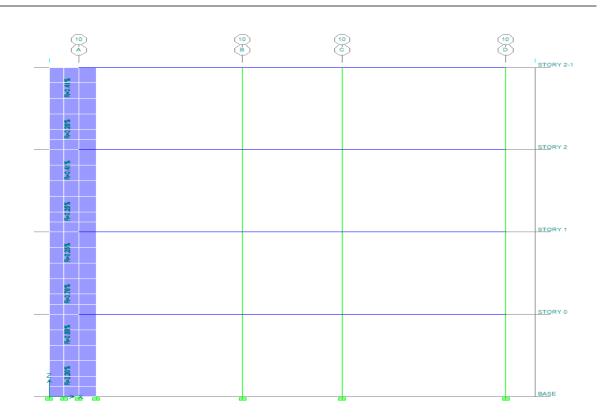

Percentage of reinforcement in Axis ash

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Percentage of reinforcement in Axis 9


HT CONSTRUCTION NUIS L81818018A PROJEKTIM LIÇ N.6886/1 SUPERVIZION-KOLAUDIME LIÇ. MK. 3289

Programme EU for Schools

"Design of 9-Year School "Emin Duraku",

Tirana Municipality

Structural Technical Report

Percentage of reinforcement in Axis 10

16. <u>Conclusions</u>

The structure has been designed according to the Eurocode recommendations, with ETABS software, a software specialized for the calculation of the composed structures. The recommendation of Eurocode have been respected in the dimensioning and constructing of all the elements.

Hydajet TOTA

Legal Representative of

HT Construction (High Tech Construction) ltd

Lic. N.6886/3