TECHNICAL SPECIFICATIONS

SHKOLLA 9-VJECARE "EMIN DURAKU"

Project Name:

Reconstruction of 9-Year School "Emin Duraku",

Tirana Municipality

Programme Title:EU4SchoolsFinanced by:European Union EUDesign Team:HT Construction (High Tech Construction) Ltd

TIRANA, 2021

HVAC Design Report

TECHNICAL SPECIFICATIONS HVAC

1 REGULATION AND STANDARDS	4
1.1 EUROPEAN REGULATIONS	4
2 GENERAL SPECIFICATIONS FOR HVAC SYSTEMS	5
2.1 GENERAL	5
3 HVAC SYSTEM EQUIPMENT	5
3.1 OUTDOOR UNITS	5
3.2 OUTDOOR UNITS TECHNICAL DATA	7
3.2.1 GROUND FLOOR	7
3.2.2 FIRST FLOOR	7
3.2.3 SECOND FLOOR	8
3.2.4 THIRD FLOOR	8
4 HVAC SYSTEM AIR TERMINALS	9
4.1 INDOOR CASSETTE AIR TERMINAL VRV	9
4.1.1 TECHNICAL SPECIFICATIONS OF CASSETTE INDOOR UNITS	9
4.2 INDOOR WALL MOUNTED AIR TERMINAL VRV	10
4.2.1 TECHNICAL SPECIFICATIONS OF HI WALL INDOOR UNITS	10
5 PIPING DIAGRAMS	12
PIPING GROUND FLOOR	12
PIPING FIRST FLOOR	14

EU4Schools Programme

"Reconstruction of 9-Year School "Emin Duraku", Tirana Municipality"

HVAC Design Report

28 28

28

PIPING SECOND FLOOR	16
PIPING THIRD FLOOR	18
5.1 WIRING DIAGRAMS	20
5.2 CENTRALIZED CONTROLLERS	21
CONCEPT	21
5.3 CONTROLLER WIRING DIAGRAMS	22
CONTROL GROUP	22
5.4 RESIDUAL CURRENT CIRCUIT BREAKER	22
<u>6</u> <u>GYM</u>	23
6.1 GENERAL DESCRIPTION	23
6.2 TECHNICAL PARAMETERS	23
6.3 USER INTERFACE	24
6.4 LOCAL LEVEL CONTROL	24
6.5 AIR DUCT – GALVANIZED SHEET WITH FLANGES	25
6.6 HIGH DENSITY INSULATION OF AIR DUCTS	25
6.7 JET NOZZLE	26
7 VRV SYSTEM PIPE CAPACITIES	27
7.1 PIPING LIMITATIONS	27
8 PIPING MATERIALS	28
8.1 REFRIGERANT PIPING FOR VRV SYSTEMS	28
8.1.1 COPPER PIPE	28

8	1	.2	JOINTS
ο.	. 1	.∠	JUINIS

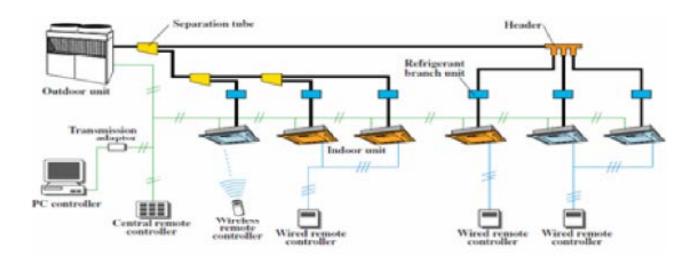
8.1.3	PIPE FIXING AND SUPPORT
8.1.4	THERMAL INSULATION

HVAC Design Report

1 Regulation and Standa	ards
-------------------------	------

1.1 European Regulations

EU 2281		2016	Lot21
EU 327		2011	Lot 11
EU 1253		2014	EU 2014/1253 for HVAC systems
ErP /125/EC	Directive	2009	Energy-related Products Directive
European s	tandards		
DIN EN ISC	D 1632	2000	Acoustic – Equipment installation and noise level inside buildings
DIN 4755		2001	Safety for heating systems
DIN EN 303	3	2003	Heating Equipment
DIN EN 442	2	2003	Indoor units
DIN EN 12	170	2002	Heating and cooling Systems
DIN EN 128	328	2003	Health and Safety
DIN EN 138	331	2000	Expansion vessels
DIN EN 143	336	2002	Installation of heating systems
VDI 2035		1996	Water cooled systems
DIN EN 10	57	1996	Copper pipes for HVAC applications
DIN EN 124	449	1999	Copper pipe installation
DIN 16892		2000	Polyethylenehigh density pipes (PE-X)
DIN 16893		2000	Polyethylenehigh density pipes (PE-X) for HVAC applications

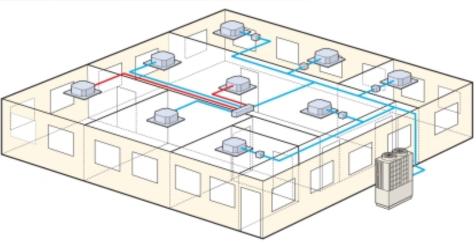


HVAC Design Report

2 General specifications for HVAC systems

2.1 General

After careful consideration of all the alternatives, VRV central HVAC system is designed for EMIN DURAKU School. VRV system can control circulating refrigerant for indoor units by selecting operating mode or changing air terminals configuration. Using its modular valve, the system can apply requested need for refrigerant according to design and IOM. All indoor units are connected in an addressed schedule with outdoor units, applying respective operating parameters for covering thermal needs during heating and cooling season.


3 HVAC System Equipment

3.1 Outdoor Units

The outdoor unit leads the connection and control of indoor units by ensuring temperature and air quality based on technical

norms. DC inverter technology ensures high efficiency and personalized control of each indoor unit.

All school facilities will have same VRV system but all indoor units will have autonomy of operation.

EU4Schools Programme

"Reconstruction of 9-Year School "Emin Duraku", Tirana Municipality"

HVAC Design Report

These central units control the system by providing individual control and minimize energy consumption by being classified as high energy efficiency devices. Inverter technology provides high coefficient of performance (COP).

The flexibility of these devices provides personalized installations for any type of environment.

The outdoor units of the VRF plant will be of the monoblock type, pre-assembled in the factory and ready for connection to the pipeline network.

Their construction will be made of galvanized steel sheet, coated with baked resin, to guarantee a good UV resistance.

They must guarantee operation in heating under external temperature conditions down to -10 ° C (wet bulb) and in cooling up to external temperature + 43 ° C (dry bulb).

External equipment should include one or more high-pressure coil-type scroll compressors, one or more air exchangers equipped with sub-cooling circuit, electronic expansion valves protected on both sides by two filters, a 4-way valve, liquid tank and a set of manually-operated valves at the inlet of the pipelines, etc.

Lubrication should be performed as a result of the difference between the inlet and outlet pressures, without the need to use a pump.

All compressors must be mounted on anti-vibration brackets. They will be preloaded with both polyvinyl and oil, be electrically protected by phase control, HP pressure sensor, relay, outdoor temperature sensor, etc.

The electronic regulator modules integrated in these units must provide a continuous linear control of the compressors and the speed of the external fans. The fans will be of the helical type and will remove the air vertically.

Each module will have:

• A DC motor, continuously lubricated and protected from water infiltrations;

• High efficiency, dynamically balanced fan

A display (positioned inside the air-conditioned premises) must ensure the reading of all working and safety parameters.

The main values to be read will be:

- HP and LP operating pressures and temperatures
- -% of opening of each electronic expansion valve
- Operating frequency of each compressor
- Operating time of each compressor

HVAC Design Report

3.2 Outdoor units technical data

3.2.1 Ground floor

Location	Albania
Project	Shkolla Emin Duraku
Title	Piping schematics - Skema e Tubacioneve
Title	Sistemi ne akset A-C Kati Perdhe
	Air cooled heat pump Kapacitati na ftohja 72 kw Kapacitati na ngrohja 76 kw
	Te dhenat per eficencen e energjise COP 4 EER 3.5

Location	Albania
Project	Shkolla Emin Duraku
Title	Piping schematics - Skema e Tubacioneve
Title	Sistemi ne akset D-L Kati Perdhe
	Air cooled heat pump Kapaciteti ne ttohje 68.7 kw Kapaciteti ne ngrohje 71 kw
	Te dhenat per eficencen e energjise COP 4 EER 3.5

3.2.2 First floor

Location	Albania
Project	Shkolla Emin Duraku
Title	Piping schematics - Skema e Tubacioneve
Title	Sistemi ne akset A-C Kati i Pare Air cooled heat pump Kapaciteti ne ftohje 74 kw Kapaciteti ne ngrohje 79 kw
	Te dhenat per eficencen e energjise COP 4 EER 3.5

Location	Albania	
Project	Shkolla Emin Duraku	
Title	Piping schematics - Skema e Tubacioneve	
Title	Sistemi ne akset D-L	
	Kati i Pare	
	Air cooled heat pump Kapaciteti ne itohje 83 kw	
	Kapaciteti ne ngrohje 90 kw	

HVAC Design Report

Second floor 3.2.3

Location	Albania	
Project	Shkolla Emin Duraku	
Title	Piping schematics - Skema e Tubacioneve	
Title	Sistemi ne akset A-C	
	Kati i Dyte	
	Air cooled heat pump Kapaciteti ne ftohje 74 kw	
	Kapaciteti ne ngrohje 79 kw	
	Te dhenat per eficencen e energjise COP 4 EER 3.5	

Location	Albania
Project	Shkolla Emin Duraku
Title	Piping schematics - Skema e Tubacioneve
Title	Sistemi ne akset D-L Kati i Dyte Air cooled heat pump Kapacitati ne ttohje 64 kw Kapacitati ne ngrohje 92 kw
	Te dhenat per eficencen e energijse COP 4 EER 3.5

Third floor 3.2.4

Albania
Shkolla Emin Duraku
Piping schematics - Skema e Tubacioneve
Sistemi ne akset A-C Kati i Trete
Air cooled heat pump Kapaciteti ne ftohje 76 kw Kapaciteti ne ngrohje 80 kw

Location	Albania
Project	Shkolla Emin Duraku
Title	Piping schematics - Skema e Tubacioneve
Title	Sistemi ne akset D-L. Kati i Trete
	Air cooled heat pump Kepeciteti ne ftohje 65 kw Kapaciteti ne ngrohje 94 kw
	Te dhenat per eficencen e energjise COP 4 EER 3.5

EU4Schools Programme

"Reconstruction of 9-Year School "Emin Duraku", Tirana Municipality"

HVAC Design Report

4 HVAC System Air Terminals

The indoor units will be of vertical type on the floor for the offices and hi walls for classes. They will be installed inside the air-conditioned areas; unit cover shall be made of polystyrene.

Each indoor unit will be equipped with the following elements:

- a multi-pass heat exchanger,
- an electronic expansion valve with adjustable range protected by two filters,
- an internal fan capable of achieving at least 4 working speeds,
- two fluid control sensors (liquid and gas),
- two air sensors (sending and recirculating),
- an easily removable, washable filter for air conditioning.

4.1 Indoor Cassette air terminal VRV

For common areas cassette units are selected

4.1.1 Technical specifications of Cassette indoor units

Dim.	Unit		Depth	mm	600	600
	Unit		Depth	mm	600	000
			Length	mm	700	700
			Width	mm	210	210
Fan		Cooling	Hi	m³/min	8.5	10.7
			lo	m³/min	4.9	7.8
			Silent	m³/min	4.5	6.6
		Heating	Hi	m³/min	9.4	11.8
			lo	m³/min	5.2	8.5
			Silent	m³/min	4.7	7.1
			Nom.	m³/min	8.5	10.7
		Heating	Nom.	m³/min	7.3	10.1
Niveli I forces zanore	Cooling			dBA	52	60
	Heating			dBA	52	60
Niveli I pres zanor	Cooling		Hi	dBA	39	44

HVAC Design Report

		lo	dBA	27	36
		Silent	dBA	24	32
	Heating	Hi	dBA	39	45
		lo	dBA	27	36
		Silent	dBA	24	32
		Nom.	dBA	33	40
	Heating	Nom.	dBA	33	40
Tubacionet	Fluid	OD	mm	6.35	6.35
	Gas	OD	mm	9.52	12.7
	Condense			20	20

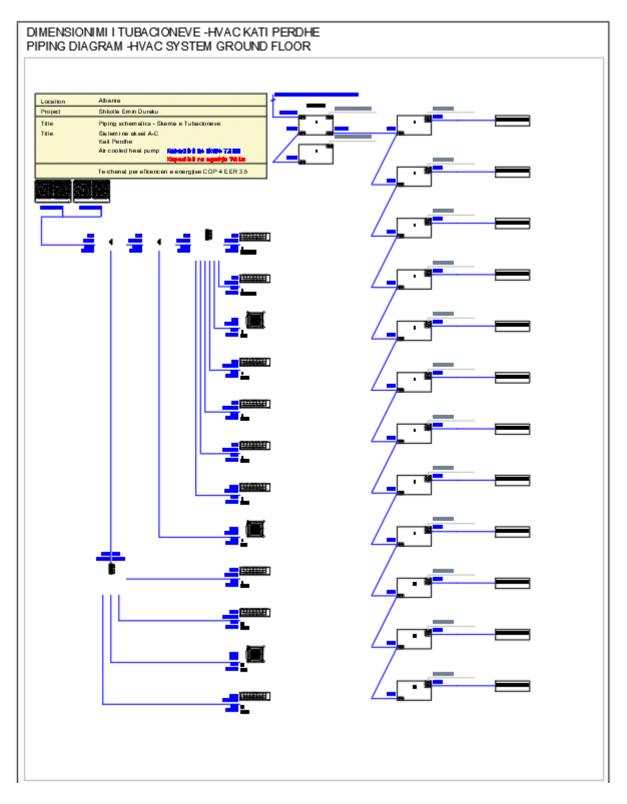
4.2 Indoor wall mounted air terminal VRV

For classrooms, wall mounted units are selected.

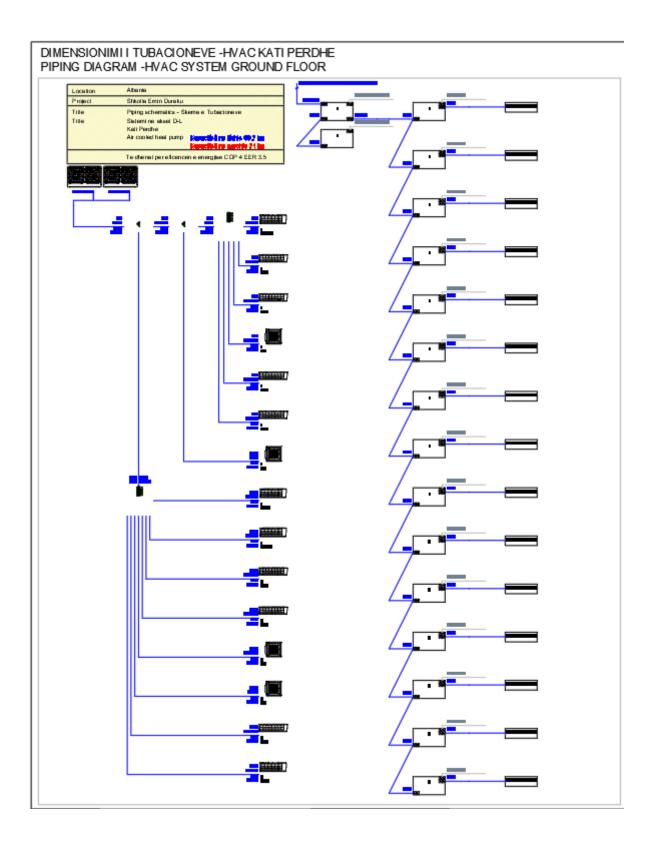
4.2.1 Technical specifications of Hi wall indoor units

Dimensions	Unit		Hight	mm	286	286	286
			Length	mm	770	770	770
			Width	mm	225	225	225
Fan		Cooling	High	m³/min	9.9	10.4	11.8
			Low	m³/min	5.8	6.1	6.3
			Silent	m³/min	4.8	4.8	4.9
		Heating	High	m³/min	10.9	11.1	12.8
			Low	m³/min	6.4	6.7	6.9
			Silent	m³/min	5.2	5.2	5.2
			Nom.	m³/min	7.8	8.0	8.2
		Heating	Nom.	m³/min	8.5	8.5	8.5
Noise level	Cooling			dBA	55	55	58
	Heating			dBA	55	55	58

HVAC Design Report


Noise pressure Cooling High dBA 40 39 43 27 Low dBA 25 26 Silent dBA 20 20 20 39 40 43 Heating High dBA dBA Low 28 28 29 Silent dBA 23 23 26 Nom. dBA 33 33 34 Heating Nom. dBA 34 34 35 Piping Liquid OD 6.35 6.35 6.35 mm Gas OD 9.50 9.50 9.50 mm 18 Condense 18 18

HVAC Design Report

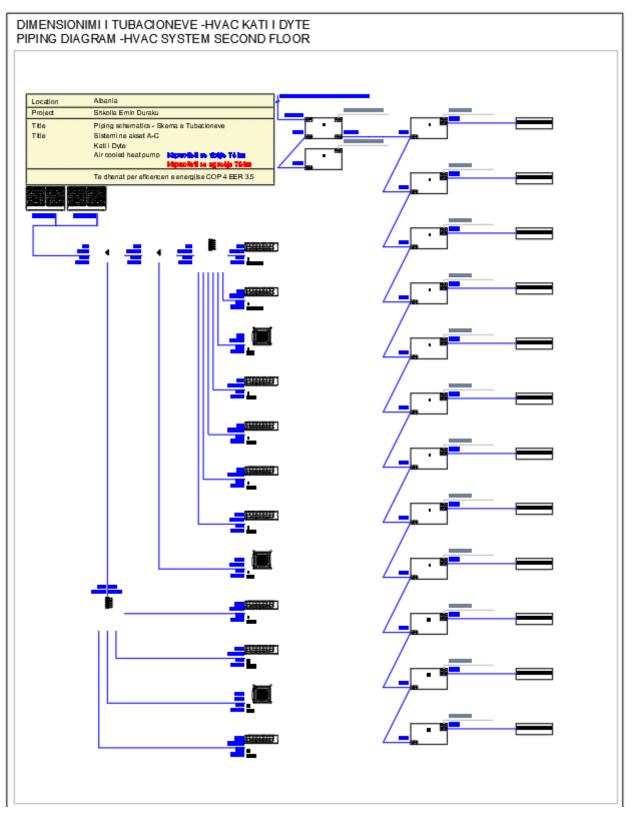

5 Piping Diagrams

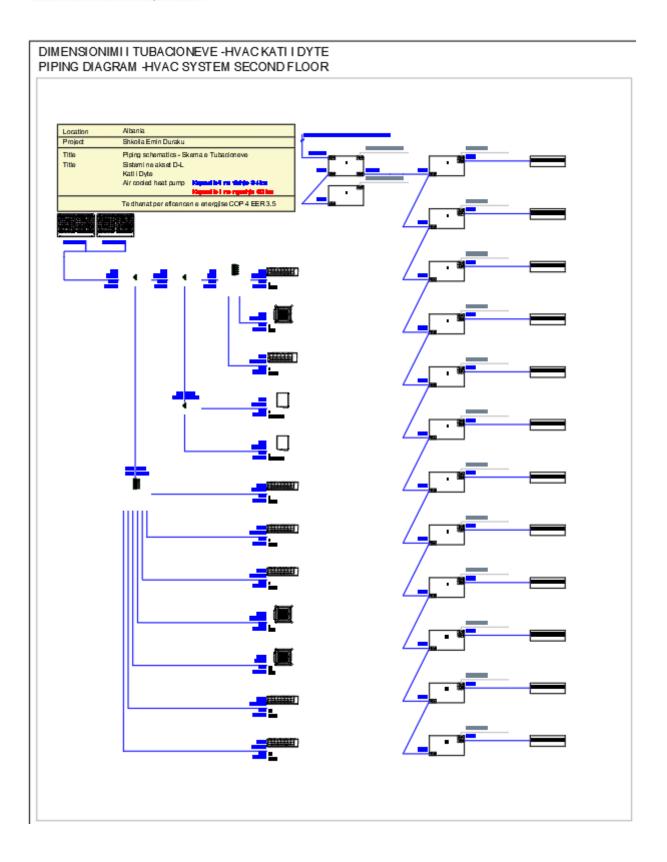
Piping ground floor

HVAC Design Report

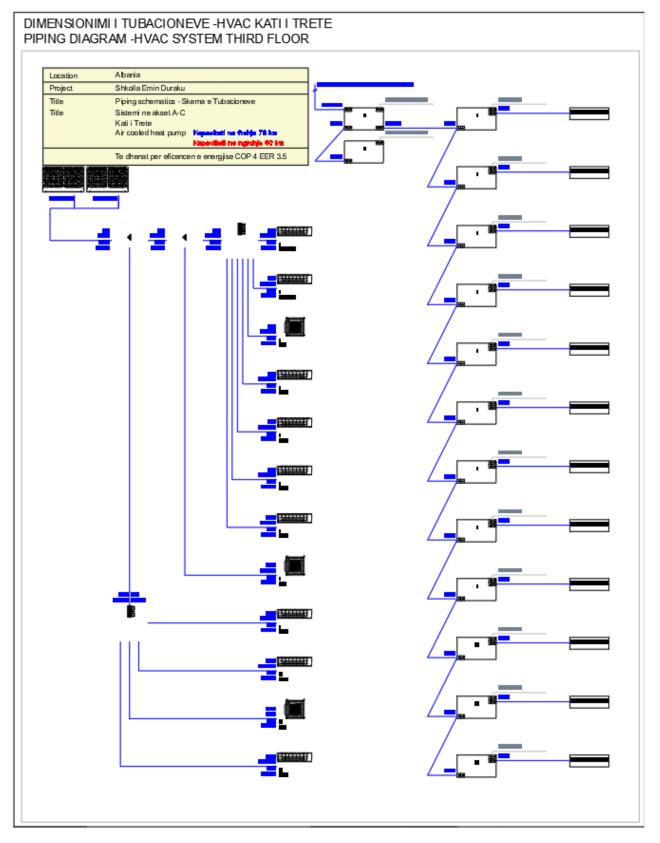
HVAC Design Report

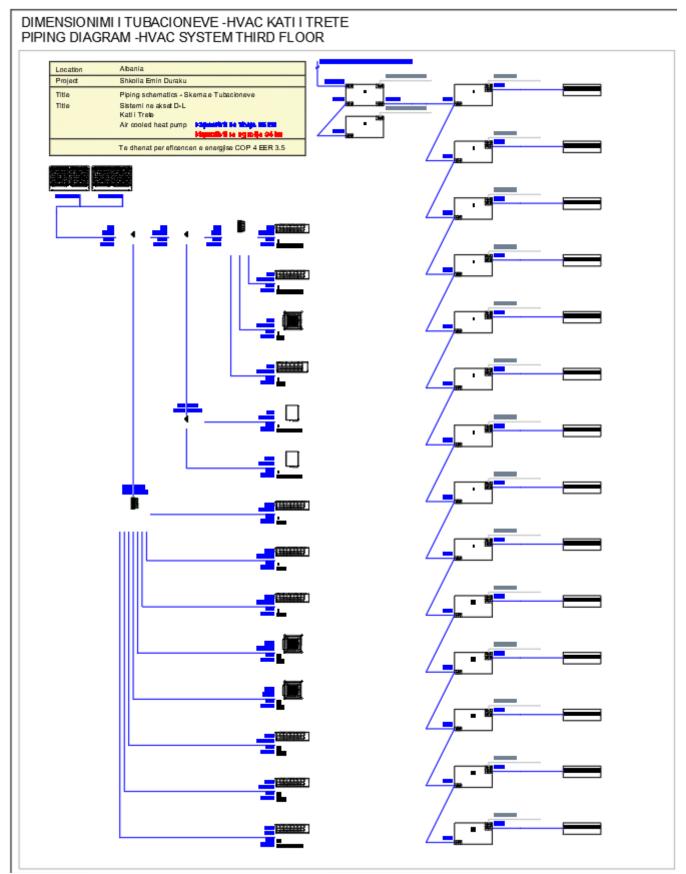
Piping first floor


HVAC Design Report

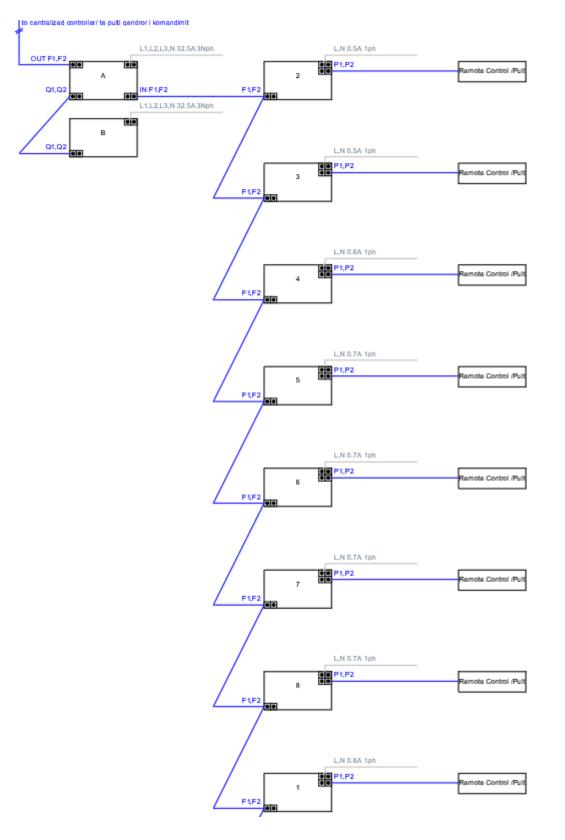

HVAC Design Report

Piping second floor


HVAC Design Report


HVAC Design Report

Piping third floor


HVAC Design Report

HVAC Design Report

5.1 Wiring Diagrams

HVAC Design Report

5.2 Centralized controllers

Concept

L	Controls Network					
ľ	# outdoors:4, # indoors:48, # addressed:48	_				
	System Controllers Intelligent Touch Controller (# 1)		Control Group # outdoors:4, # indoors:48, # addressed:48	11	Outdoor Units	to wiring
					Kati perdhe A-C (12) Kati pare A-C (12) Kati dyte A-C (12) Kati trete A-C (12) Kati trete A-C (12)	

Controls Network # outdoors:4, # indoors:54, # addressed:54		
System Controllers Intelligent Touch Controller (# 1)	Control Group # outdoors:4, # indoors:54, # addressed:54	to wiring
	Central Controller Outdoor Units Kati perdhe D-L (15) Kati pare D-L (13) Kati dyte D-L (12) Kati trete (14)	

HVAC Design Report

5.3 Controller wiring diagrams

Control Group

Client	Albania			
Project	Shkolla Emin Duraku			
	Controller wiring schematics			
	Control Group			
Date	01/21/2022			
Drawing No				
Kati perdhe A-C (12)				
	OUT F1,F2			
Kati pare A-C (12)			Itouch Controller	1
Kali pare A-C (12)			Itolor Controlle	
	<u> </u>	l		
Kati dyte A-C (12)				
Kati trete A-C (12)				
Kati perdhe D-L (15)				
	OUT F1,F2			
	L,N			\mathbf{N}
Kati pare D-L (13)			Itouch Controller	
Kati dyte D-L (12)				
Kati dyte D-E (12)				
	<u> </u>			
Kati trete (14)				

Best Practices

5.4 Residual Current Circuit Breaker

For better protection of installations against the risk of fire, power supply of indoor and outdoor units must be protected with a Residual Current Circuit Breaker. For protection against fire, we recommend a sensitivity of 300mA. The selected RCCB should be of the type B, suitable for inverter devices and indicated by the symbols here below. Further electrical characteristics of the RCCB must be selected in accordance with local regulation.

\sim	ww
--------	----

For a complete list of all required safety precautions, warnings and attention points, consult the "general safety precautions manual" delivered with the unit.

HVAC Design Report

6 Gym

One rooftop unit will be used for the air conditioning system of the gym. The control panel shall be included in order to allow remote access to the unit.

Package Rooftop unit shall be factory assembled single piece for outside installation. The Package Rooftop unit shall use the R410A refrigerant with efficient thermodynamic characteristics, and shall be equipped with inverter scroll compressors. Rooftop unit shall have selection with 100% fresh air and free cooling option. Rooftop shall have rotary heat exchanger. - Packaged rooftop units shall comply with the requirements of the following European regulations

- Machinery 98/37/CE revised,
- Low voltage directive 2006/95/CEE
- Electromagnetic Compatibility directive 2004/108/CEE and the applicable recommendations of the European standards.
- Machine safety: electrical equipment in machines, general regulations, EN 60204-1,
- Electromagnetic Emissions radiated: IEC 61000-3-3
- Electromagnetic Emissions canalised: IEC 61000-6-4
- Electromagnetic immunity: IEC 61000-6-2

6.1 General description

Unit(s) shall be designed, manufactured and tested in a facility with a quality assurance system certified ISO 9001 and with an environment management certified ISO 14001.

Unit(s) shall be run tested at the factory before shipment.

6.2 Technical Parameters

Cooling capacity: 123 kW

Compressor power input: 48,7kW

HVAC Design Report

EER: 3.18 kW/kW

Energy class coefficient cooling (@Eurovent conditions) : A

Heating capacity: 130 kW

Heating capacity (integrated with defrost cycles):kW

Compressor power input: kW

COP: 64 kW/kW

Energy class coefficient heating (@Eurovent conditions): A

Outside Air Temperature: 2°C

Outdoor weighted Sound Power Level: 83dB(A)

Indoor Supply duct weighted Sound Power Level: 67dB(A)

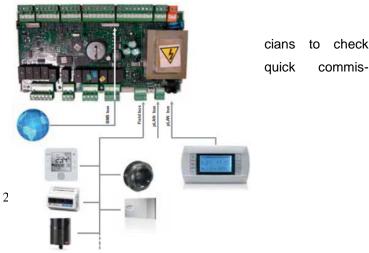
As standard, the unit shall be able to start up and operate thermodynamic at full load with ambient temperatures ranging from -10 °C to 52 °C. If heating is operated by one of axuillary heating options (hot water coil, gas module or electrical heater) rooftop unit must be operate down to minimum -20 °C ambient temperature.

6.3 User interface

Unit control shall include as a minimum: microprocessor with non-volatile memory, picture guided unit/operator interface, the LOCAL/OFF/REMOTE/CCN selector and a 4,3 inches coloured touch-screen display with multiple language capability

Unit control shall have an IP port to permit user connection via web browser, allowing same level of access to control menus as unit mounted interface (excluding start/stop and alarm reset capabilities)

Whilst easy to use, menus still allow quick access to all main operating parameters including: Number of compressors on, suction/relief pressure, compressor operating time, set-points, Air temperature, entering/leaving water temperature.



6.4 Local Level Control

Rooftop controller gives end-user or the service technibelow listed parts of the unit before start-up and ensure sioning and diagnostics :

Compressor(s)

Indoor fan

EU4Schools Programme

"Reconstruction of 9-Year School "Emin Duraku", Tirana Municipality"

HVAC Design Report

Outdoor fan(s)

Electrical heater

Defrost heater

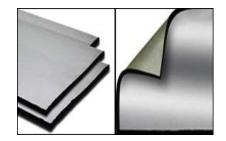
Power exhaust (opt)

Alarm output test

Economiser analog control (optional)

Hot water coil 3 way valve (optional)

6.5 Air Duct –Galvanized sheet with flanges

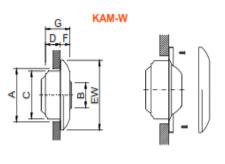


Duct Dimension	Minimum thickness of metallic sheets prior to galvanization	Weight
Up to 45 cm	6/10	5.2kg/m2
Up to 41 to 70 cm	8/10	6.7kg/m2
Up to 71 to 100 cm	10/10	8.3kg/m2
greater then 100cm	12/10	10.0kg/m2

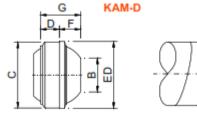
6.6 High density insulation of air ducts

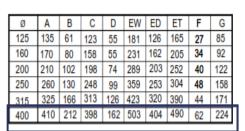
Insulating Self-adhesive coating and aluminum protective layer.

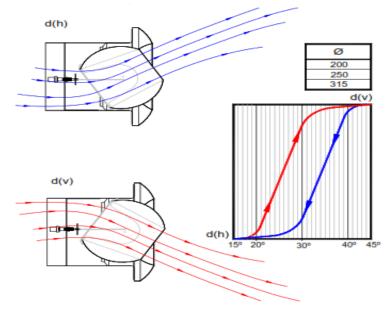
- Premeability: μ> 4000
- Thermal conductivity: λ = 0.045W / mK at 40 ° C
- Operating temperatures -40 ° C to + 150 ° C
- Fire Rating" E-s3,d0


EU4Schools Programme "Reconstruction of 9-Year School "Emin Duraku", Tirana Municipality" HVAC Design Report

6.7 Jet Nozzle


Jet nozzles have been designed specifically to provide airdiffusion into large spaces. They are special in so far as they can achieve a long throw on either heating or cooling whilst giving complete flexibility of direction.


Supply air jet nozzle, manually adjustable, suitable for mounting in a wall having a connection to either a circular or rectangular duct'



G KAM-D

Jet nozzle that is autonomously thermally adjustable by means of athermodynamic piston. The jet nozzles of the KAM-ACTIF series are designed for air diffusion in large spaces and special applications, thanks to the long throw and directional control

HVAC Design Report

of their air streams and theircapacity to handle large volumes of air. The supply air angle of the air streams varies inaccordance with the supply air temperature, reducing stratification.

7 VRV system Pipe capacities

Maximum Connection Index	Diameters
149.9	9.5mmx15.9mm
199.9	9.5mmx19.1mm
289.9	9.5mmx22.2mm
419.9	12.7mmx28.6mm
639.9	15.9mmx28.6mm
919.9	19.1mmx34.9mm
> 919.9	19.1mmx41.3mm
Main pipe size up	22.2mmx41.3mm

7.1 Piping limitations

Description	Value
Maximum total length	1,000.0m
Maximum longest actual length	165.0m
Maximum longest equivalent length	190.0m
Maximum main pipe length (size up of main pipe required if longer)	-
Maximum length first branch to indoor unit(size up of intermediate pipes required if longer)	40.0m
Maximum length first branch to indoor unit	90.0m
Maximum length of indoor units to nearest branch	40.0m
Maximum length difference between longest and shortest distance to indoor units	40.0m
Maximum height difference, outdoor unit below indoor units	90.0m
Minimum connection ratio, outdoor unit below indoor units	-
Maximum height difference, outdoor unit above indoor units	90.0m
Minimum connection ratio, outdoor unit above indoor units	-
Maximum height difference in technical cooling, outdoor unit below indoor units	90.0m
Maximum height difference in technical cooling, outdoor unit above indoor units	90.0m
Maximum height difference between indoor units	30.0m
Connection ratio range	50.0% - 130.0%
Refrigerant pipe diameters	22.2mm (liquid) x

HVAC Design Report

	41.3mm (gas)
Maximum equivalent length from BP unit or VRV indoor to VRV REFNET	90.0m

8 Piping Materials

8.1 Refrigerant piping for VRV systems

8.1.1 Copper pipe

Copper pipes should be according to EN6507-69 B series

8.1.2 Joints

All joints should be made with copper or bronze materials

8.1.3 Pipe fixing and support

Supports and fixing elements for piping works should be done with galvanized materials and with iron profiles in the case of large pipes where special constructions will be installed and painted with anti-rust paint.

8.1.4 Thermal Insulation

Thermal insulation layers should be similar to:

- Glass wool, minimum density 60 Kg/mc
- polystyrene, minimum density 35 kg/mc
- pipe thermal insulation, density 40 kg/mc