ТЕХНИЧЕСКИЙ ОТЧЕТ

по теме: техническое обследование строительных конструкций здания, части крыши для монтажа солнечных панелей здания главного офиса расположенного по адресу город Ташкент, улица Тарас Шевченко-4.

Ташкент 2022г.

Описание объекта.

Обследуемый объект: часть крыши для монтажа солнечных панелей здания главного офиса, расположенного город Ташкент, улица Тараса Шевченко-4.

Характеристика района строительства.

Сейсмичность участка нахождения объекта согласно КМК 2.01.03-19 «Строительство в сейсмических районах», Приложение 1 пункт №301- 7-баллов 25 лет и 8 баллов 100лет.

Глубина сезонного промерзания грунта согласно КМК 2.01.01-94 «Климатические и физико-геологические данные для проектирования», таблица 12 составляет 0,48 м раз в 10 лет.

Нормативная снеговая нагрузка — 50 кг/м^2 .

Нормативная ветровая нагрузка — 38 кг/м^2 .

2.2. Объемно-планировочная схема и конструктивное решение здания

Объект главный офис двух и трёх этажное кирпичное здание, с подвалом. Здание выполнено из глиняного жженного кирпича уложенного на цементное - известковое песчаном растворе. Данное здание «П» образной формы в плане согласно по чертёжам №1. Высота здания 3,30м от пола до потолка. Пролет здания разне: 60,0м х56,4м. которого по нормам 60,м не превышает. КМК 2.01.03-19 таблица №3.1 пункт№1-Д. Обследуемое здание построено 1950годов прошлого столетия согласно проектно сметной документациям. Однако на момент обследования этих документов не представлены. Фото-1-4.

Обмерено обследовательские работы показали, что здание имеет следующее конструктивное решение.

Наружные стены выполнены из глиняного жженного кирпича. Толщина наружных стен 510мм. Фото-1-4,6,23.

Крыша здания выполнены из деревянных конструкций. Фото-6-23

Кровля здания выполнены из декоративного профилированного настила. Фото-1-4.

3. МЕТОДИКА ОБСЛЕДОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

3.1. Техническое обследование строительных конструкций проводилось визуально-инструментальным методом, в соответствии с КМК 2.01.15-97 «Положение по техническому обследованию жилых зданий», «Рекомендациями по обследованию и оценке технического состояния крупнопанельных и каменных зданий. ЦНИИСК им. В.А. Кучеренко, Москва, 1988 г» и другими нормативными документами.

- 3.2. При обследовании определялись фактические размеры между разбивочными осями здания, пролеты и сечения конструкций, а также дефекты элементов и узлов, допущенные при проектировании, изготовлении, транспортировке, монтаже и появившиеся в процессе эксплуатации.
- 3.3. Инструменты и приборы, используемые при обследовании:
- отвесы для измерения отклонения или смещения от вертикали;
- рулетки металлические длиной 3 и 5 м по ГОСТ 7502-89 для измерения линейных размеров;
- штангенциркуль по ГОСТ 166-80 для измерения линейных размеров;
- щупы для измерения величины зазоров, глубины и ширины раскрытия трещин;
- лазерная рулетка BOSCH DLE 50, для измерения линейных размеров;
- цифровой фотоаппарат «Canon» для фиксации дефектов строительных конструкций;
- измеритель прочности бетона ОНИКС-2.5— для определения марки и класса бетона.
- измеритель защитного слоя бетона ПОИСК-2,5

Техническое состояние основных строительных конструкций;

4.6.Стены выполненные из глиняного жженного кирпича уложенного на цементное известковое песчаном растворе.

Шаг поперечных стен при 8 балльной зоне по таблице №3.1; КМК 2.01.03.-19, пункт №5, при І-категории кладки должны быт не более 12,0м, а фактически они менее 12,0м и **не** требуется усиления. Простенки должны быт не менее-0,9**м**, а они более 0,9м, и не требуется усиления. Отношение ширины простенка к ширине проему 3,30м:1,80м=1,80>0,5 по табл. №3.2.пункт №3 и **не** требуется усиления. Отношение высоты стены к толщине: **3,3м:0,51= 6,4**<**12**. Не требуется усиление стен согласно КМК 2.01.03.-19 пункт 3,5,6.

Перекрытия выполнены ж/б монолитные и утеплитель минплита и пементное песчаная стяжка 50мм-70мм.

Крыша выполнена из деревянных конструкций и состоит из деревянных стоек-бресьев- Ø150, раскосов-брусьев 200х200мм, мауэрлатов из досок-50ммх100мм, стропилы из досок 50ммх200мм и деревянные обрешётки 50х50мм. Стропилы укреплены с помощью анеерных болтов Ø16 и стальными полосами 50мм х 5мм. В конструкциях крыши на каждые 2-3 м имеется стойки, балки и прогоны под стропилами. Они при проектирования рассчитаны на нагрузку 400кг/м². Крыша отвечает по нормам КМК-2.03.10-95, Крыша и кровля-Ташкент 2012года издания, по приложению №2 и №3.

Кровля выполнены из декоративных профилированных настилов. Они укреплены с помощью саморезных болтов Ø6x6. Имеется парапет и они работают как противопожарное ограждение. Организованный водосток.

Результат испытаний по определению прочности железобетонных конструкций. Определено прибором ОНИКС-2.5.

Таблица №1

	Наименование конструкций	Данные испытаний			
		R, МПа	V,%	W,%	Класс
					бетона
1	2	3	4	5	6
1		21,9	22,8	34,0	B22,1
2		24,4	15,5	36,0	B22,1
3	Перекрытия	22,5	10,0	21,2	B22,1
4	монолитные	25,9	19,8	35,3	B22,1
5		22,4	18,5	39,1	B22,1

Примечание:

V- коэффициент вариации.

W- размах между максимальным и минимальными результатами.

Результаты испытаний по определению прочности кирпича и цементно-песчаного раствора

(определенные прибором «ОНИКС-2,5»)

Таблица №2

No॒	Наименование конструкций и	Данные испытаний			
п.п	материалов	R,МПа	V,%	W,%	Марка
1	2	3	4	5	6
1 2 3 4 5 6	Кирпич жженные глиняные	8,1 9,0 7,4 7,9 8,8 9,5	23,1 24,9 22,8 24,6 25,7 23,2	12,9 13,0 12,1 11,1 12,8 12,8	M100 M100 M100 M100 M100 M100
1 2 3 4 5 6	Цементное – песчаный раствор	6,5 6,1 8,3 5,5 6,1	14,2 18,8 28,1 22,1 21,2 17,2	33,1 40,4 42,5 40,9 42,1 38,0	M61 M61 M61 M61 M61 M61

Примечание:

V- коэффициент вариации.

W- размах между максимальным и минимальными результатами.

Результаты испытаний по определению прочности сцепления раствора с кирпичом

Таблица №3.

No	Отрывающая	Прочность сцепления		Характер отрыва	
П.П	нагрузка кг	$R_t^B \kappa \Gamma / c M^2$			
		Частное	Среднее	По	По
				раствору	контакту
1	2	3	4	5	6
1	378/195	1.95		-	+
2	399/206	1.92	1.94	-	+
3	377/195	1.95		-	+
4	395/129	1.75		-	+
5	372/208	1.78	1.75	-	+
6	364/210	1.73		-	+
7	383/207	1.85		-	+
8	366/201	1.88	1.82	-	+
9	379/215	1.76		-	+
10	382/201	1.90		-	+
11	362/188	1.92	1.88	-	+
12	364/198	1.83		_	+
13	375/221	1.69		_	+
14	385/218	1.77	1.72	_	+
15	396/233	1.70		_	+

Среднее значение по здании: -1.82 кгс/см²

Расчет на нагрузку на 1м² конструкцию деревянной крыши.

- 1.Вес снеговой нагрузки; $P_1 = 50 \text{кг}$ х1,0м х1м = 50кг/м^2 . Согласно характеристикам района строительства.
- 2.Вес нагрузки от ветра: $P_3=38$ кг/м². Согласно характеристикам района строительства.
- 3.Вес профилированного настила P_2 согласно ГОСТ 24045-94 марка НС 35-1000-0,6 =6 κ г/м².
- 4. Вес от солнечных панелей максимально: $P_4 = 20 \text{кг/м}^2$.

Фактическая нагрузки: $P = P_{1+} P_{2+} P_{3+} P_{4} = 50 \kappa \Gamma/m^2 + 6 \kappa \Gamma/m^2 + 38 \kappa \Gamma/m^2 + 20 \kappa \Gamma/m^2 = 94 \kappa \Gamma/m^2$.

Разница: $400 \text{ кг/m}^2 - 94 \text{ кг/m}^2 = 306 \text{ кг/m}^2$.

Где 400 кг/м 2 - средний грузоподъемность крыши.

Фактический запас нагрузки составляет 306 кг/м².

При установки солнечных панелей на грузоподъемность крыши не влияет и не требуется каких либо усилений.

6. Выводы и заключение

по теме: техническое обследование строительных конструкций здания, часть крыши для монтажа солнечных панелей здания главного офиса расположенного город Ташкент, улица Тараса Шевченко-4.

- 1.Стены выполнены из глиняного жженного кирпича. Они работоспособные.
- 2.Перекрытия ж/б монолитные. Они работоспособные.
- **3.Крыша** выполнена из деревянных конструкций. Необходимо деревянные конструкций обработать антисептиками и антиперинами. При установки солнечных панелей каких-либо усилений не требуется. Они находятся в **работоспособном** состоянии.
- **4. Кровля** выполнена из декоративного профилированного настила. Организован водосток. Они **работоспособные.**

Таким образом, на основании анализа работ по техническому обследованию строительных конструкций здания можно сделать следующие заключение: «Разрушений деформаций несущих конструкций зданий И В обнаружено. Состояние несущих конструкций здания целом удовлетворительное. Несущая конструкция здания по прочностным характеристикам строительных материалов и конструкций удовлетворяет нормативные требования КМК 2.01.03-19 «Строительство в сейсмических районах». Каких либо усилений или восстановление строительных конструкций не требуется. Здание находится эксплуатационное-надежным и сейсмостойким состоянии. Разрешается устанавливать солнечные панели без каких-либо усилений.

приложения

Фото 1

Фото 3

Фото 5

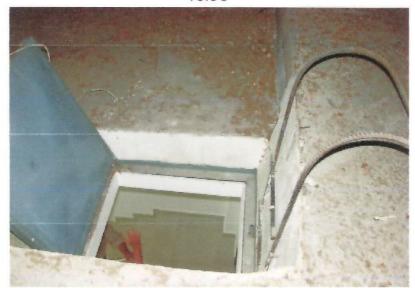
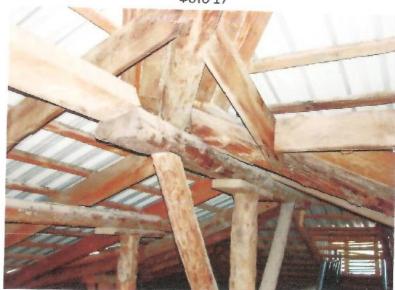
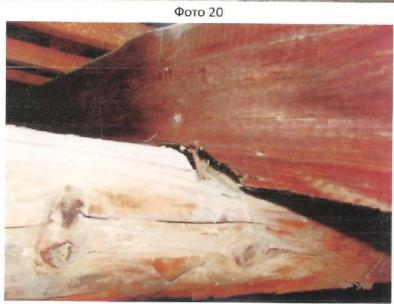


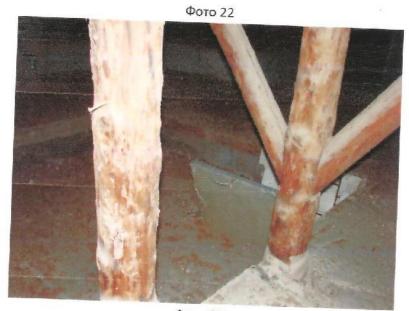
Фото 6

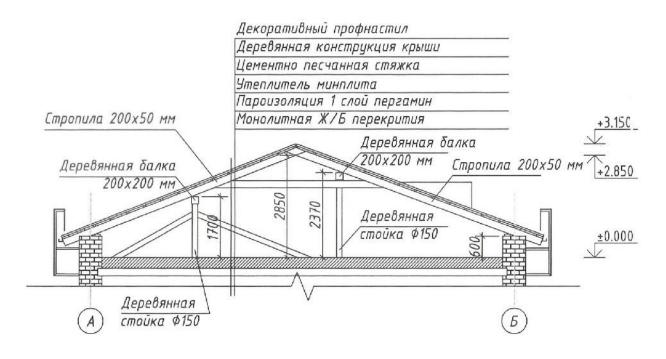
Фото 12

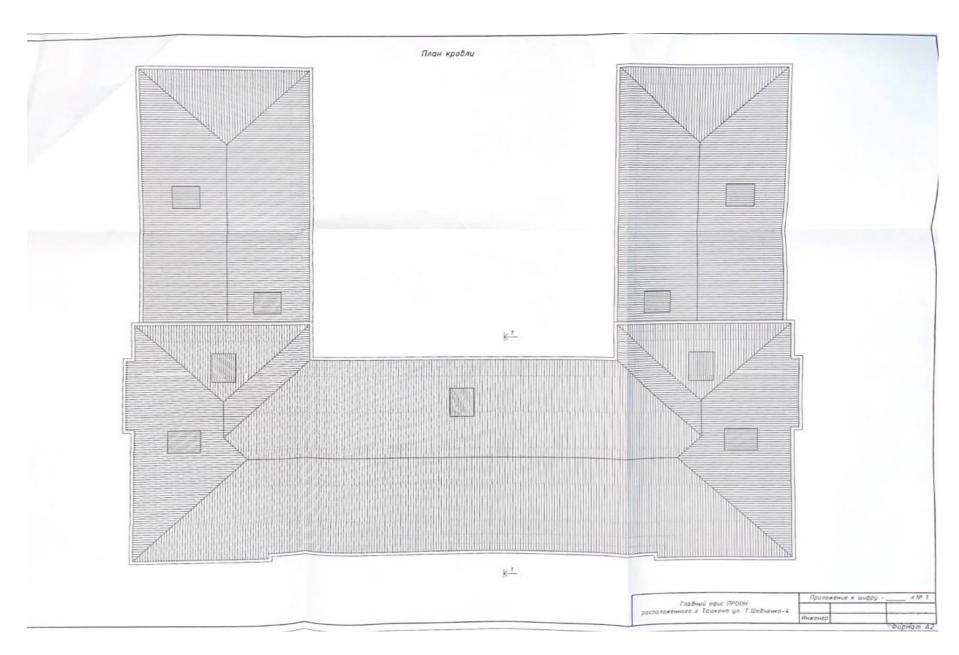
Фото 15

Фото 17


Фото 18




Разрез 1-1



0.00 условный от перкрытия крыши

5 0 5 0 50000	Приложение к шифру — л.№ 3	3
Главный офис ПРООН расположенного г Ташкент ул. Т.Шевченко-4		
	Инженер	

Формат А4

