Minutes of the Pre-Bid Meeting
Date of Pre-Bid Meeting: 13 Sep 2022

Participants:
- Mr. Hossein Varjavand, Project Technical Expert, EU Sistan Project
- Mr. Mohammadreza Jarkeh, Project Technical Expert, EU Sistan Project
- Ms. Masoumeh Akhlaghi, Project Admin Assistant, EU Sistan Project
- Ms. Leila Seidabadi, Project Consultant on Energy, EU Sistan Project
- Mr. Javad Mahmoodirad, Project Coordination Analyst, UNDP
- Mr. Gagik Gevorkian, Procurement Associate, UNDP
- Ms. Niloofar Dehghan, Programme Associate, UNDP
- Ms. Zahra Golshan, Procurement Assistant, UNDP

Background of the Bidding Process:

United Nations Development Programme in Iran (UNDP) intends to conduct a competitive process to identity qualified company(s) to establish a contract for “Supply, Transmission, Installation, and Re-commissioning of a 20-kW Solar Photovoltaic Off-Grid Power Plant in the Zabol University” in Sistan Province.

To this end a Request for Proposal package was prepared and advertised through UNDP website on 16 August 2022. The pre-bid meeting was held on 13 Sep 2022 at 13:00 virtually to elaborate the requested services and technical aspects of work, present the Request for Proposal package and provide clarification to the raised questions.

Detail of Pre-bid meeting:

The meeting was opened by UNDP procurement team and procurement assistant elaborated different sections of RFP with emphasis on the evaluation method, the eligibility criteria, requirements of qualification for key staff, the accurate approach for completing the bidding forms including Financial Proposal.

The meeting was followed by explanations provided by project technical expert at national and provincial offices and technical inputs by the consultant on energy. A Powerpoint file and a film from the current location of powerplants and a place where the solar panels should be transferred and installed were presented.

The meeting was followed by question-and-answer which are detailed as below:

<table>
<thead>
<tr>
<th>Questions</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>What was the reason for the improper use of the previously built powerplant and the destruction of its equipment?</td>
<td>Because the power plant was not started or monitored during its unprincipled construction and startup, it remained unused, and then the power plant was destroyed for lack of proper maintenance and repair, as well as its improper location.</td>
</tr>
<tr>
<td>Is there a requirement to connect the system to the general energy grid and should the permissions related to the grid connection be obtained?</td>
<td>It is not necessary, because the new power plant must operate as a hybrid and supply electricity to the greenhouses as long as it is needed, and in case of a shortage of electricity for the greenhouses, the</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Required electricity must be supplied from the grid at the same time.</td>
<td>For this reason, existing on-grid inverters should be replaced with hybrid inverters.</td>
</tr>
<tr>
<td>It is predicted that the needed foundation for replacing the powerplant is the light-weighted foundation, as it is proposed in the project terms of reference. Is there any need for a geotechnical test (soil test) to define another type of foundation?</td>
<td>In the current situation, lightweight foundation is approved, the consultant should perform a geotechnical test to determine and suggest a suitable sort of foundation. In the case of a heavy foundation, the employer must be notified and will make the necessary changes once the decision in this regard has been made.</td>
</tr>
<tr>
<td>How far should the electricity produced from the inverter be delivered?</td>
<td>The expected distance from the inverters to the greenhouse electrical panel is estimated to be around 200 meters. In case of a need for more than 200 meters of cables, the employer should be informed of this issue, and a decision should be made.</td>
</tr>
<tr>
<td>Considering that the equipment must cover the Renewable Energy and Energy Efficiency Organization (SATBA) standards, What decision should be made regarding confirming the quality of the equipment that does not exist in the country?</td>
<td>Before purchasing the equipment, the contractor should provide the vendor list of equipment and raise it with UNDP and the office of the Sistan project to be confirmed by the project supervisor. In addition, it is necessary to use high-quality equipment with quality and warranty certification.</td>
</tr>
<tr>
<td>Why the reason of some panels damaged or broken?</td>
<td>The reason for the damage was heavy machinery traffic for construction operations. In the new site, to prevent this type of damage, according to the MoU with Zabul University, this university will be responsible for the protection and should take protective measures such as fencing.</td>
</tr>
<tr>
<td>How long after the project is completed is the blocked amount of money as the guarantee of good performance will be paid back and what will be the conditions for releasing the guarantee?</td>
<td>After the temporary handover (6 months from the start of the contract), the contractor must ensure the complete and correct operation of the powerplant for one year, and after this period, the amount of the guarantee of good performance will be paid.</td>
</tr>
</tbody>
</table>

At the end of the meeting, it was mentioned that the minute of the Pre-bid meeting will be shared with the participants and will be also uploaded on e-tendering. In case of further inquiries, the bidders can send their
questions in writing and through email and UNDP will reply accordingly. Also, it was mentioned that if bidders are intended to have a site visit from the university to get more detailed information, they can plan for 18th and 19th of Sep and the project has already made necessary arrangements with the university for this visit. The procurement assistant emphasis on the deadline for this tender which will be 22nd of September and requested the bidders to send their responses before this deadline.

End.
United Nations Development Programme

Enhancing integrated natural resource management for the restoration of wetland ecosystems and support to alternative livelihoods development of local communities (Sistan project)

“Supply, transmission, installation, and re-commissioning of a 20-kW solar photovoltaic Off-Grid power plant in the Zabol University”
Existing Solar Panel Site
Click on Each Star ★ to look at that point
Model No: HSL_72 Poly

Maximum Power (Pmax): 280W

Tolerance: ±5%

Open-circuit Voltage (Voc): 44.5V

Short-circuit Current (Isc): 8.69A

Voltage at Maximum Power (Vmp): 35.4V

Current at Maximum Power (Imp): 8.20A

Module Efficiency (%): 15%

All technical data at Standard Test Condition (STC): 1000W/m², Spectrum AM1.5, and Cell Temperature 25°C

Maximum System Voltage: 1000V

Nominal Operating Cell Temperature (NOCT): 45±2°C

Operating Temperature: 40°C to 85°C

Weight: 24KG

Dimensions: 1695×920×45mm

Number of Cells (Pieces): 72

Cell Technology: POLY-SI

Maximum Series Fuse Rating: 15A

Application Class: A
به پایداری کهکشان از توان آمریکایی کهکشان 23
Grid-connected Photovoltaic Inverter

Model: ZDNY-TL10000

Max. DC voltage: 1000 V
Rated input voltage: 640 V
MPP voltage range: 250-800 V
Max. DC current (input A/input B): 22A/11A
Absolute max. total PV array short circuit current (input A/input B): 25A/13A
Max. DC power (@ cos φ = 1): 10200 W
Nominal AC voltage: 380/400/230 V
Nominal AC current: 3*14.5A
Max. continuous AC current: 3*16 A
Rated AC power (@ 230 V, 50 Hz): 10000 W
Max. apparent AC power: 10000 VA
Nominal AC grid frequency: 50 Hz
Power factor at rated power: 1
Adjustable displacement factor range: 0.86 over-excited...
0.96 under-excited
Operating ambient temperature range: -20°C...+60°C
Ingress protection: IP54(Fans), IP65(Other)
Protective class: 1
Over voltage category: III (MAINS), II (PV)

S/N: S1221440220012

Hangzhou Zhejiang University Sunny Energy Science and Technology Co., Ltd.
ADD: West Area, A Building, National University Science and Technology Park of Zhejiang University, No. 525, Xueshi Road, Hangzhou, Zhejiang, China
TEL: 185 571 6971 9950
FAX: 185 571 6979 5993
E-mail: sales@solart-decnn.com
WEB: www.solar-decnn.com

MADE IN CHINA
Future Solar Panel Site
Click on Each Star ★ to look at that point